Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+2y=96
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
4x-3y=60\times 2
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
4x-3y=120
Multiply 60 and 2 to get 120.
3x+2y=96,4x-3y=120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=96
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-2y+96
Subtract 2y from both sides of the equation.
x=\frac{1}{3}\left(-2y+96\right)
Divide both sides by 3.
x=-\frac{2}{3}y+32
Multiply \frac{1}{3} times -2y+96.
4\left(-\frac{2}{3}y+32\right)-3y=120
Substitute -\frac{2y}{3}+32 for x in the other equation, 4x-3y=120.
-\frac{8}{3}y+128-3y=120
Multiply 4 times -\frac{2y}{3}+32.
-\frac{17}{3}y+128=120
Add -\frac{8y}{3} to -3y.
-\frac{17}{3}y=-8
Subtract 128 from both sides of the equation.
y=\frac{24}{17}
Divide both sides of the equation by -\frac{17}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\times \frac{24}{17}+32
Substitute \frac{24}{17} for y in x=-\frac{2}{3}y+32. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{16}{17}+32
Multiply -\frac{2}{3} times \frac{24}{17} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{528}{17}
Add 32 to -\frac{16}{17}.
x=\frac{528}{17},y=\frac{24}{17}
The system is now solved.
3x+2y=96
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
4x-3y=60\times 2
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
4x-3y=120
Multiply 60 and 2 to get 120.
3x+2y=96,4x-3y=120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}96\\120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}3&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}96\\120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&2\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}96\\120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}96\\120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-2\times 4}&-\frac{2}{3\left(-3\right)-2\times 4}\\-\frac{4}{3\left(-3\right)-2\times 4}&\frac{3}{3\left(-3\right)-2\times 4}\end{matrix}\right)\left(\begin{matrix}96\\120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{2}{17}\\\frac{4}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}96\\120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 96+\frac{2}{17}\times 120\\\frac{4}{17}\times 96-\frac{3}{17}\times 120\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{528}{17}\\\frac{24}{17}\end{matrix}\right)
Do the arithmetic.
x=\frac{528}{17},y=\frac{24}{17}
Extract the matrix elements x and y.
3x+2y=96
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
4x-3y=60\times 2
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
4x-3y=120
Multiply 60 and 2 to get 120.
3x+2y=96,4x-3y=120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\times 3x+4\times 2y=4\times 96,3\times 4x+3\left(-3\right)y=3\times 120
To make 3x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 3.
12x+8y=384,12x-9y=360
Simplify.
12x-12x+8y+9y=384-360
Subtract 12x-9y=360 from 12x+8y=384 by subtracting like terms on each side of the equal sign.
8y+9y=384-360
Add 12x to -12x. Terms 12x and -12x cancel out, leaving an equation with only one variable that can be solved.
17y=384-360
Add 8y to 9y.
17y=24
Add 384 to -360.
y=\frac{24}{17}
Divide both sides by 17.
4x-3\times \frac{24}{17}=120
Substitute \frac{24}{17} for y in 4x-3y=120. Because the resulting equation contains only one variable, you can solve for x directly.
4x-\frac{72}{17}=120
Multiply -3 times \frac{24}{17}.
4x=\frac{2112}{17}
Add \frac{72}{17} to both sides of the equation.
x=\frac{528}{17}
Divide both sides by 4.
x=\frac{528}{17},y=\frac{24}{17}
The system is now solved.