Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

b^{2}x^{2}+a^{2}y^{2}=a^{2}b^{2}
Consider the first equation. Multiply both sides of the equation by a^{2}b^{2}, the least common multiple of a^{2},b^{2}.
y=kx-k
Consider the second equation. Use the distributive property to multiply k by x-1.
b^{2}x^{2}+a^{2}\left(kx-k\right)^{2}=a^{2}b^{2}
Substitute kx-k for y in the other equation, b^{2}x^{2}+a^{2}y^{2}=a^{2}b^{2}.
b^{2}x^{2}+a^{2}\left(k^{2}x^{2}+2\left(-k\right)kx+\left(-k\right)^{2}\right)=a^{2}b^{2}
Square kx-k.
b^{2}x^{2}+a^{2}k^{2}x^{2}+2\left(-k\right)ka^{2}x+\left(-k\right)^{2}a^{2}=a^{2}b^{2}
Multiply a^{2} times k^{2}x^{2}+2\left(-k\right)kx+\left(-k\right)^{2}.
\left(a^{2}k^{2}+b^{2}\right)x^{2}+2\left(-k\right)ka^{2}x+\left(-k\right)^{2}a^{2}=a^{2}b^{2}
Add b^{2}x^{2} to a^{2}k^{2}x^{2}.
\left(a^{2}k^{2}+b^{2}\right)x^{2}+2\left(-k\right)ka^{2}x+\left(-k\right)^{2}a^{2}-a^{2}b^{2}=0
Subtract a^{2}b^{2} from both sides of the equation.
x=\frac{-2\left(-k\right)ka^{2}±\sqrt{\left(2\left(-k\right)ka^{2}\right)^{2}-4\left(a^{2}k^{2}+b^{2}\right)\left(-\left(b-k\right)\left(b+k\right)a^{2}\right)}}{2\left(a^{2}k^{2}+b^{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute b^{2}+a^{2}k^{2} for a, a^{2}\times 2k\left(-k\right) for b, and -\left(k+b\right)\left(-k+b\right)a^{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2\left(-k\right)ka^{2}±\sqrt{4a^{4}k^{4}-4\left(a^{2}k^{2}+b^{2}\right)\left(-\left(b-k\right)\left(b+k\right)a^{2}\right)}}{2\left(a^{2}k^{2}+b^{2}\right)}
Square a^{2}\times 2k\left(-k\right).
x=\frac{-2\left(-k\right)ka^{2}±\sqrt{4a^{4}k^{4}+\left(-4a^{2}k^{2}-4b^{2}\right)\left(-\left(b-k\right)\left(b+k\right)a^{2}\right)}}{2\left(a^{2}k^{2}+b^{2}\right)}
Multiply -4 times b^{2}+a^{2}k^{2}.
x=\frac{-2\left(-k\right)ka^{2}±\sqrt{4a^{4}k^{4}+4\left(b-k\right)\left(b+k\right)a^{2}\left(a^{2}k^{2}+b^{2}\right)}}{2\left(a^{2}k^{2}+b^{2}\right)}
Multiply -4b^{2}-4a^{2}k^{2} times -\left(k+b\right)\left(-k+b\right)a^{2}.
x=\frac{-2\left(-k\right)ka^{2}±\sqrt{4a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}}{2\left(a^{2}k^{2}+b^{2}\right)}
Add 4a^{4}k^{4} to 4\left(b^{2}+k^{2}a^{2}\right)\left(k+b\right)\left(-k+b\right)a^{2}.
x=\frac{-2\left(-k\right)ka^{2}±2\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}}{2\left(a^{2}k^{2}+b^{2}\right)}
Take the square root of 4\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}.
x=\frac{2a^{2}k^{2}±2\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}}{2a^{2}k^{2}+2b^{2}}
Multiply 2 times b^{2}+a^{2}k^{2}.
x=\frac{2\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+2a^{2}k^{2}}{2a^{2}k^{2}+2b^{2}}
Now solve the equation x=\frac{2a^{2}k^{2}±2\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}}{2a^{2}k^{2}+2b^{2}} when ± is plus. Add 2a^{2}k^{2} to 2\sqrt{\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}}.
x=\frac{\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+a^{2}k^{2}}{a^{2}k^{2}+b^{2}}
Divide 2k^{2}a^{2}+2\sqrt{\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}} by 2b^{2}+2k^{2}a^{2}.
x=\frac{-2\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+2a^{2}k^{2}}{2a^{2}k^{2}+2b^{2}}
Now solve the equation x=\frac{2a^{2}k^{2}±2\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}}{2a^{2}k^{2}+2b^{2}} when ± is minus. Subtract 2\sqrt{\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}} from 2a^{2}k^{2}.
x=\frac{-\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+a^{2}k^{2}}{a^{2}k^{2}+b^{2}}
Divide 2k^{2}a^{2}-2\sqrt{\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}} by 2b^{2}+2k^{2}a^{2}.
y=k\times \frac{\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+a^{2}k^{2}}{a^{2}k^{2}+b^{2}}-k
There are two solutions for x: \frac{k^{2}a^{2}+\sqrt{\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}}}{b^{2}+k^{2}a^{2}} and \frac{k^{2}a^{2}-\sqrt{\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}}}{b^{2}+k^{2}a^{2}}. Substitute \frac{k^{2}a^{2}+\sqrt{\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}}}{b^{2}+k^{2}a^{2}} for x in the equation y=kx-k to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+a^{2}k^{2}}{a^{2}k^{2}+b^{2}}k-k
Multiply k times \frac{k^{2}a^{2}+\sqrt{\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}}}{b^{2}+k^{2}a^{2}}.
y=k\times \frac{-\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+a^{2}k^{2}}{a^{2}k^{2}+b^{2}}-k
Now substitute \frac{k^{2}a^{2}-\sqrt{\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}}}{b^{2}+k^{2}a^{2}} for x in the equation y=kx-k and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{-\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+a^{2}k^{2}}{a^{2}k^{2}+b^{2}}k-k
Multiply k times \frac{k^{2}a^{2}-\sqrt{\left(a^{2}k^{2}+b^{2}-k^{2}\right)a^{2}b^{2}}}{b^{2}+k^{2}a^{2}}.
y=\frac{\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+a^{2}k^{2}}{a^{2}k^{2}+b^{2}}k-k,x=\frac{\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+a^{2}k^{2}}{a^{2}k^{2}+b^{2}}\text{ or }y=\frac{-\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+a^{2}k^{2}}{a^{2}k^{2}+b^{2}}k-k,x=\frac{-\sqrt{a^{2}b^{2}\left(a^{2}k^{2}+b^{2}-k^{2}\right)}+a^{2}k^{2}}{a^{2}k^{2}+b^{2}}
The system is now solved.