\left\{ \begin{array} { l } { \frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 4 } = 1 } \\ { x = y + 1 } \end{array} \right.
Solve for x, y
x=\frac{3-3\sqrt{6}}{5}\approx -0.869693846\text{, }y=\frac{-3\sqrt{6}-2}{5}\approx -1.869693846
x=\frac{3\sqrt{6}+3}{5}\approx 2.069693846\text{, }y=\frac{3\sqrt{6}-2}{5}\approx 1.069693846
Graph
Share
Copied to clipboard
2x^{2}+3y^{2}=12
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 6,4.
x-y=1
Consider the second equation. Subtract y from both sides.
x-y=1,3y^{2}+2x^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=1
Solve x-y=1 for x by isolating x on the left hand side of the equal sign.
x=y+1
Subtract -y from both sides of the equation.
3y^{2}+2\left(y+1\right)^{2}=12
Substitute y+1 for x in the other equation, 3y^{2}+2x^{2}=12.
3y^{2}+2\left(y^{2}+2y+1\right)=12
Square y+1.
3y^{2}+2y^{2}+4y+2=12
Multiply 2 times y^{2}+2y+1.
5y^{2}+4y+2=12
Add 3y^{2} to 2y^{2}.
5y^{2}+4y-10=0
Subtract 12 from both sides of the equation.
y=\frac{-4±\sqrt{4^{2}-4\times 5\left(-10\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+2\times 1^{2} for a, 2\times 1\times 1\times 2 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\times 5\left(-10\right)}}{2\times 5}
Square 2\times 1\times 1\times 2.
y=\frac{-4±\sqrt{16-20\left(-10\right)}}{2\times 5}
Multiply -4 times 3+2\times 1^{2}.
y=\frac{-4±\sqrt{16+200}}{2\times 5}
Multiply -20 times -10.
y=\frac{-4±\sqrt{216}}{2\times 5}
Add 16 to 200.
y=\frac{-4±6\sqrt{6}}{2\times 5}
Take the square root of 216.
y=\frac{-4±6\sqrt{6}}{10}
Multiply 2 times 3+2\times 1^{2}.
y=\frac{6\sqrt{6}-4}{10}
Now solve the equation y=\frac{-4±6\sqrt{6}}{10} when ± is plus. Add -4 to 6\sqrt{6}.
y=\frac{3\sqrt{6}-2}{5}
Divide -4+6\sqrt{6} by 10.
y=\frac{-6\sqrt{6}-4}{10}
Now solve the equation y=\frac{-4±6\sqrt{6}}{10} when ± is minus. Subtract 6\sqrt{6} from -4.
y=\frac{-3\sqrt{6}-2}{5}
Divide -4-6\sqrt{6} by 10.
x=\frac{3\sqrt{6}-2}{5}+1
There are two solutions for y: \frac{-2+3\sqrt{6}}{5} and \frac{-2-3\sqrt{6}}{5}. Substitute \frac{-2+3\sqrt{6}}{5} for y in the equation x=y+1 to find the corresponding solution for x that satisfies both equations.
x=\frac{-3\sqrt{6}-2}{5}+1
Now substitute \frac{-2-3\sqrt{6}}{5} for y in the equation x=y+1 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{3\sqrt{6}-2}{5}+1,y=\frac{3\sqrt{6}-2}{5}\text{ or }x=\frac{-3\sqrt{6}-2}{5}+1,y=\frac{-3\sqrt{6}-2}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}