Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+3y^{2}=12
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 6,4.
x-y=1
Consider the second equation. Subtract y from both sides.
x-y=1,3y^{2}+2x^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=1
Solve x-y=1 for x by isolating x on the left hand side of the equal sign.
x=y+1
Subtract -y from both sides of the equation.
3y^{2}+2\left(y+1\right)^{2}=12
Substitute y+1 for x in the other equation, 3y^{2}+2x^{2}=12.
3y^{2}+2\left(y^{2}+2y+1\right)=12
Square y+1.
3y^{2}+2y^{2}+4y+2=12
Multiply 2 times y^{2}+2y+1.
5y^{2}+4y+2=12
Add 3y^{2} to 2y^{2}.
5y^{2}+4y-10=0
Subtract 12 from both sides of the equation.
y=\frac{-4±\sqrt{4^{2}-4\times 5\left(-10\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+2\times 1^{2} for a, 2\times 1\times 1\times 2 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\times 5\left(-10\right)}}{2\times 5}
Square 2\times 1\times 1\times 2.
y=\frac{-4±\sqrt{16-20\left(-10\right)}}{2\times 5}
Multiply -4 times 3+2\times 1^{2}.
y=\frac{-4±\sqrt{16+200}}{2\times 5}
Multiply -20 times -10.
y=\frac{-4±\sqrt{216}}{2\times 5}
Add 16 to 200.
y=\frac{-4±6\sqrt{6}}{2\times 5}
Take the square root of 216.
y=\frac{-4±6\sqrt{6}}{10}
Multiply 2 times 3+2\times 1^{2}.
y=\frac{6\sqrt{6}-4}{10}
Now solve the equation y=\frac{-4±6\sqrt{6}}{10} when ± is plus. Add -4 to 6\sqrt{6}.
y=\frac{3\sqrt{6}-2}{5}
Divide -4+6\sqrt{6} by 10.
y=\frac{-6\sqrt{6}-4}{10}
Now solve the equation y=\frac{-4±6\sqrt{6}}{10} when ± is minus. Subtract 6\sqrt{6} from -4.
y=\frac{-3\sqrt{6}-2}{5}
Divide -4-6\sqrt{6} by 10.
x=\frac{3\sqrt{6}-2}{5}+1
There are two solutions for y: \frac{-2+3\sqrt{6}}{5} and \frac{-2-3\sqrt{6}}{5}. Substitute \frac{-2+3\sqrt{6}}{5} for y in the equation x=y+1 to find the corresponding solution for x that satisfies both equations.
x=\frac{-3\sqrt{6}-2}{5}+1
Now substitute \frac{-2-3\sqrt{6}}{5} for y in the equation x=y+1 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{3\sqrt{6}-2}{5}+1,y=\frac{3\sqrt{6}-2}{5}\text{ or }x=\frac{-3\sqrt{6}-2}{5}+1,y=\frac{-3\sqrt{6}-2}{5}
The system is now solved.