Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2y^{2}=6
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 6,3.
y+x=\sqrt{3}
Consider the second equation. Add x to both sides.
y+x=\sqrt{3},x^{2}+2y^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+x=\sqrt{3}
Solve y+x=\sqrt{3} for y by isolating y on the left hand side of the equal sign.
y=-x+\sqrt{3}
Subtract x from both sides of the equation.
x^{2}+2\left(-x+\sqrt{3}\right)^{2}=6
Substitute -x+\sqrt{3} for y in the other equation, x^{2}+2y^{2}=6.
x^{2}+2\left(x^{2}+\left(-2\sqrt{3}\right)x+\left(\sqrt{3}\right)^{2}\right)=6
Square -x+\sqrt{3}.
x^{2}+2x^{2}+\left(-4\sqrt{3}\right)x+2\left(\sqrt{3}\right)^{2}=6
Multiply 2 times x^{2}+\left(-2\sqrt{3}\right)x+\left(\sqrt{3}\right)^{2}.
3x^{2}+\left(-4\sqrt{3}\right)x+2\left(\sqrt{3}\right)^{2}=6
Add x^{2} to 2x^{2}.
3x^{2}+\left(-4\sqrt{3}\right)x+2\left(\sqrt{3}\right)^{2}-6=0
Subtract 6 from both sides of the equation.
x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{\left(-4\sqrt{3}\right)^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+2\left(-1\right)^{2} for a, 2\left(-1\right)\times 2\sqrt{3} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\sqrt{3}\right)±4\sqrt{3}}{2\times 3}
The square root of b^{2} is |b|. Substitute 2\left(-1\right)\times 2\sqrt{3} for b.
x=\frac{4\sqrt{3}±4\sqrt{3}}{2\times 3}
The opposite of 2\left(-1\right)\times 2\sqrt{3} is 4\sqrt{3}.
x=\frac{4\sqrt{3}±4\sqrt{3}}{6}
Multiply 2 times 1+2\left(-1\right)^{2}.
x=\frac{8\sqrt{3}}{6}
Now solve the equation x=\frac{4\sqrt{3}±4\sqrt{3}}{6} when ± is plus. Add 4\sqrt{3} to 4\sqrt{3}.
x=\frac{4\sqrt{3}}{3}
Divide 8\sqrt{3} by 6.
x=\frac{0}{6}
Now solve the equation x=\frac{4\sqrt{3}±4\sqrt{3}}{6} when ± is minus. Subtract 4\sqrt{3} from 4\sqrt{3}.
x=0
Divide 0 by 6.
y=-\frac{4\sqrt{3}}{3}+\sqrt{3}
There are two solutions for x: \frac{4\sqrt{3}}{3} and 0. Substitute \frac{4\sqrt{3}}{3} for x in the equation y=-x+\sqrt{3} to find the corresponding solution for y that satisfies both equations.
y=\sqrt{3}
Now substitute 0 for x in the equation y=-x+\sqrt{3} and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{4\sqrt{3}}{3}+\sqrt{3},x=\frac{4\sqrt{3}}{3}\text{ or }y=\sqrt{3},x=0
The system is now solved.