\left\{ \begin{array} { l } { \frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 3 } = 1 } \\ { y = - x + \sqrt { 3 } } \end{array} \right.
Solve for x, y
x=\frac{4\sqrt{3}}{3}\approx 2.309401077\text{, }y=-\frac{\sqrt{3}}{3}\approx -0.577350269
x=0\text{, }y=\sqrt{3}\approx 1.732050808
Graph
Share
Copied to clipboard
x^{2}+2y^{2}=6
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 6,3.
y+x=\sqrt{3}
Consider the second equation. Add x to both sides.
y+x=\sqrt{3},x^{2}+2y^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+x=\sqrt{3}
Solve y+x=\sqrt{3} for y by isolating y on the left hand side of the equal sign.
y=-x+\sqrt{3}
Subtract x from both sides of the equation.
x^{2}+2\left(-x+\sqrt{3}\right)^{2}=6
Substitute -x+\sqrt{3} for y in the other equation, x^{2}+2y^{2}=6.
x^{2}+2\left(x^{2}+\left(-2\sqrt{3}\right)x+\left(\sqrt{3}\right)^{2}\right)=6
Square -x+\sqrt{3}.
x^{2}+2x^{2}+\left(-4\sqrt{3}\right)x+2\left(\sqrt{3}\right)^{2}=6
Multiply 2 times x^{2}+\left(-2\sqrt{3}\right)x+\left(\sqrt{3}\right)^{2}.
3x^{2}+\left(-4\sqrt{3}\right)x+2\left(\sqrt{3}\right)^{2}=6
Add x^{2} to 2x^{2}.
3x^{2}+\left(-4\sqrt{3}\right)x+2\left(\sqrt{3}\right)^{2}-6=0
Subtract 6 from both sides of the equation.
x=\frac{-\left(-4\sqrt{3}\right)±\sqrt{\left(-4\sqrt{3}\right)^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+2\left(-1\right)^{2} for a, 2\left(-1\right)\times 2\sqrt{3} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\sqrt{3}\right)±4\sqrt{3}}{2\times 3}
The square root of b^{2} is |b|. Substitute 2\left(-1\right)\times 2\sqrt{3} for b.
x=\frac{4\sqrt{3}±4\sqrt{3}}{2\times 3}
The opposite of 2\left(-1\right)\times 2\sqrt{3} is 4\sqrt{3}.
x=\frac{4\sqrt{3}±4\sqrt{3}}{6}
Multiply 2 times 1+2\left(-1\right)^{2}.
x=\frac{8\sqrt{3}}{6}
Now solve the equation x=\frac{4\sqrt{3}±4\sqrt{3}}{6} when ± is plus. Add 4\sqrt{3} to 4\sqrt{3}.
x=\frac{4\sqrt{3}}{3}
Divide 8\sqrt{3} by 6.
x=\frac{0}{6}
Now solve the equation x=\frac{4\sqrt{3}±4\sqrt{3}}{6} when ± is minus. Subtract 4\sqrt{3} from 4\sqrt{3}.
x=0
Divide 0 by 6.
y=-\frac{4\sqrt{3}}{3}+\sqrt{3}
There are two solutions for x: \frac{4\sqrt{3}}{3} and 0. Substitute \frac{4\sqrt{3}}{3} for x in the equation y=-x+\sqrt{3} to find the corresponding solution for y that satisfies both equations.
y=\sqrt{3}
Now substitute 0 for x in the equation y=-x+\sqrt{3} and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{4\sqrt{3}}{3}+\sqrt{3},x=\frac{4\sqrt{3}}{3}\text{ or }y=\sqrt{3},x=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}