\left\{ \begin{array} { l } { \frac { x ^ { 2 } } { 4 } + y ^ { 2 } = 1 } \\ { y - 2 = \frac { 1 } { 2 } x } \end{array} \right.
Solve for x, y (complex solution)
x=-\sqrt{2}i-2\approx -2-1.414213562i\text{, }y=-\frac{\sqrt{2}i}{2}+1\approx 1-0.707106781i
x=-2+\sqrt{2}i\approx -2+1.414213562i\text{, }y=\frac{\sqrt{2}i}{2}+1\approx 1+0.707106781i
Graph
Share
Copied to clipboard
x^{2}+4y^{2}=4
Consider the first equation. Multiply both sides of the equation by 4.
y-2-\frac{1}{2}x=0
Consider the second equation. Subtract \frac{1}{2}x from both sides.
y-\frac{1}{2}x=2
Add 2 to both sides. Anything plus zero gives itself.
y=\frac{1}{2}x+2
Subtract -\frac{1}{2}x from both sides of the equation.
x^{2}+4\left(\frac{1}{2}x+2\right)^{2}=4
Substitute \frac{1}{2}x+2 for y in the other equation, x^{2}+4y^{2}=4.
x^{2}+4\left(\frac{1}{4}x^{2}+2x+4\right)=4
Square \frac{1}{2}x+2.
x^{2}+x^{2}+8x+16=4
Multiply 4 times \frac{1}{4}x^{2}+2x+4.
2x^{2}+8x+16=4
Add x^{2} to x^{2}.
2x^{2}+8x+12=0
Subtract 4 from both sides of the equation.
x=\frac{-8±\sqrt{8^{2}-4\times 2\times 12}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+4\times \left(\frac{1}{2}\right)^{2} for a, 4\times 2\times \frac{1}{2}\times 2 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\times 12}}{2\times 2}
Square 4\times 2\times \frac{1}{2}\times 2.
x=\frac{-8±\sqrt{64-8\times 12}}{2\times 2}
Multiply -4 times 1+4\times \left(\frac{1}{2}\right)^{2}.
x=\frac{-8±\sqrt{64-96}}{2\times 2}
Multiply -8 times 12.
x=\frac{-8±\sqrt{-32}}{2\times 2}
Add 64 to -96.
x=\frac{-8±4\sqrt{2}i}{2\times 2}
Take the square root of -32.
x=\frac{-8±4\sqrt{2}i}{4}
Multiply 2 times 1+4\times \left(\frac{1}{2}\right)^{2}.
x=\frac{-8+2^{\frac{5}{2}}i}{4}
Now solve the equation x=\frac{-8±4\sqrt{2}i}{4} when ± is plus. Add -8 to 4i\sqrt{2}.
x=-2+\sqrt{2}i
Divide -8+i\times 2^{\frac{5}{2}} by 4.
x=\frac{-2^{\frac{5}{2}}i-8}{4}
Now solve the equation x=\frac{-8±4\sqrt{2}i}{4} when ± is minus. Subtract 4i\sqrt{2} from -8.
x=-\sqrt{2}i-2
Divide -8-i\times 2^{\frac{5}{2}} by 4.
y=\frac{1}{2}\left(-2+\sqrt{2}i\right)+2
There are two solutions for x: -2+i\sqrt{2} and -2-i\sqrt{2}. Substitute -2+i\sqrt{2} for x in the equation y=\frac{1}{2}x+2 to find the corresponding solution for y that satisfies both equations.
y=\frac{-2+\sqrt{2}i}{2}+2
Multiply \frac{1}{2} times -2+i\sqrt{2}.
y=\frac{1}{2}\left(-\sqrt{2}i-2\right)+2
Now substitute -2-i\sqrt{2} for x in the equation y=\frac{1}{2}x+2 and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{-\sqrt{2}i-2}{2}+2
Multiply \frac{1}{2} times -2-i\sqrt{2}.
y=\frac{-2+\sqrt{2}i}{2}+2,x=-2+\sqrt{2}i\text{ or }y=\frac{-\sqrt{2}i-2}{2}+2,x=-\sqrt{2}i-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}