\left\{ \begin{array} { l } { \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 4 } = 6 } \\ { x + y = 4 } \end{array} \right.
Solve for x, y
x=2\sqrt{2}+2\approx 4.828427125\text{, }y=2-2\sqrt{2}\approx -0.828427125
x=2-2\sqrt{2}\approx -0.828427125\text{, }y=2\sqrt{2}+2\approx 4.828427125
Graph
Share
Copied to clipboard
x^{2}+y^{2}=24
Consider the first equation. Multiply both sides of the equation by 4.
x+y=4,y^{2}+x^{2}=24
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=4
Solve x+y=4 for x by isolating x on the left hand side of the equal sign.
x=-y+4
Subtract y from both sides of the equation.
y^{2}+\left(-y+4\right)^{2}=24
Substitute -y+4 for x in the other equation, y^{2}+x^{2}=24.
y^{2}+y^{2}-8y+16=24
Square -y+4.
2y^{2}-8y+16=24
Add y^{2} to y^{2}.
2y^{2}-8y-8=0
Subtract 24 from both sides of the equation.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 4\left(-1\right)\times 2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-8\right)}}{2\times 2}
Square 1\times 4\left(-1\right)\times 2.
y=\frac{-\left(-8\right)±\sqrt{64-8\left(-8\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-8\right)±\sqrt{64+64}}{2\times 2}
Multiply -8 times -8.
y=\frac{-\left(-8\right)±\sqrt{128}}{2\times 2}
Add 64 to 64.
y=\frac{-\left(-8\right)±8\sqrt{2}}{2\times 2}
Take the square root of 128.
y=\frac{8±8\sqrt{2}}{2\times 2}
The opposite of 1\times 4\left(-1\right)\times 2 is 8.
y=\frac{8±8\sqrt{2}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{8\sqrt{2}+8}{4}
Now solve the equation y=\frac{8±8\sqrt{2}}{4} when ± is plus. Add 8 to 8\sqrt{2}.
y=2\sqrt{2}+2
Divide 8+8\sqrt{2} by 4.
y=\frac{8-8\sqrt{2}}{4}
Now solve the equation y=\frac{8±8\sqrt{2}}{4} when ± is minus. Subtract 8\sqrt{2} from 8.
y=2-2\sqrt{2}
Divide 8-8\sqrt{2} by 4.
x=-\left(2\sqrt{2}+2\right)+4
There are two solutions for y: 2+2\sqrt{2} and 2-2\sqrt{2}. Substitute 2+2\sqrt{2} for y in the equation x=-y+4 to find the corresponding solution for x that satisfies both equations.
x=-\left(2-2\sqrt{2}\right)+4
Now substitute 2-2\sqrt{2} for y in the equation x=-y+4 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(2\sqrt{2}+2\right)+4,y=2\sqrt{2}+2\text{ or }x=-\left(2-2\sqrt{2}\right)+4,y=2-2\sqrt{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}