Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+y^{2}=24
Consider the first equation. Multiply both sides of the equation by 4.
x+y=4,y^{2}+x^{2}=24
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=4
Solve x+y=4 for x by isolating x on the left hand side of the equal sign.
x=-y+4
Subtract y from both sides of the equation.
y^{2}+\left(-y+4\right)^{2}=24
Substitute -y+4 for x in the other equation, y^{2}+x^{2}=24.
y^{2}+y^{2}-8y+16=24
Square -y+4.
2y^{2}-8y+16=24
Add y^{2} to y^{2}.
2y^{2}-8y-8=0
Subtract 24 from both sides of the equation.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 4\left(-1\right)\times 2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-8\right)}}{2\times 2}
Square 1\times 4\left(-1\right)\times 2.
y=\frac{-\left(-8\right)±\sqrt{64-8\left(-8\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-8\right)±\sqrt{64+64}}{2\times 2}
Multiply -8 times -8.
y=\frac{-\left(-8\right)±\sqrt{128}}{2\times 2}
Add 64 to 64.
y=\frac{-\left(-8\right)±8\sqrt{2}}{2\times 2}
Take the square root of 128.
y=\frac{8±8\sqrt{2}}{2\times 2}
The opposite of 1\times 4\left(-1\right)\times 2 is 8.
y=\frac{8±8\sqrt{2}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{8\sqrt{2}+8}{4}
Now solve the equation y=\frac{8±8\sqrt{2}}{4} when ± is plus. Add 8 to 8\sqrt{2}.
y=2\sqrt{2}+2
Divide 8+8\sqrt{2} by 4.
y=\frac{8-8\sqrt{2}}{4}
Now solve the equation y=\frac{8±8\sqrt{2}}{4} when ± is minus. Subtract 8\sqrt{2} from 8.
y=2-2\sqrt{2}
Divide 8-8\sqrt{2} by 4.
x=-\left(2\sqrt{2}+2\right)+4
There are two solutions for y: 2+2\sqrt{2} and 2-2\sqrt{2}. Substitute 2+2\sqrt{2} for y in the equation x=-y+4 to find the corresponding solution for x that satisfies both equations.
x=-\left(2-2\sqrt{2}\right)+4
Now substitute 2-2\sqrt{2} for y in the equation x=-y+4 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(2\sqrt{2}+2\right)+4,y=2\sqrt{2}+2\text{ or }x=-\left(2-2\sqrt{2}\right)+4,y=2-2\sqrt{2}
The system is now solved.