\left\{ \begin{array} { l } { \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 3 } = 1 } \\ { y = x + 1 } \end{array} \right.
Solve for x, y
x=\frac{-6\sqrt{2}-4}{7}\approx -1.783611625\text{, }y=\frac{3-6\sqrt{2}}{7}\approx -0.783611625
x=\frac{6\sqrt{2}-4}{7}\approx 0.640754482\text{, }y=\frac{6\sqrt{2}+3}{7}\approx 1.640754482
Graph
Share
Copied to clipboard
3x^{2}+4y^{2}=12
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
y-x=1
Consider the second equation. Subtract x from both sides.
y-x=1,3x^{2}+4y^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=1
Solve y-x=1 for y by isolating y on the left hand side of the equal sign.
y=x+1
Subtract -x from both sides of the equation.
3x^{2}+4\left(x+1\right)^{2}=12
Substitute x+1 for y in the other equation, 3x^{2}+4y^{2}=12.
3x^{2}+4\left(x^{2}+2x+1\right)=12
Square x+1.
3x^{2}+4x^{2}+8x+4=12
Multiply 4 times x^{2}+2x+1.
7x^{2}+8x+4=12
Add 3x^{2} to 4x^{2}.
7x^{2}+8x-8=0
Subtract 12 from both sides of the equation.
x=\frac{-8±\sqrt{8^{2}-4\times 7\left(-8\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4\times 1^{2} for a, 4\times 1\times 1\times 2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 7\left(-8\right)}}{2\times 7}
Square 4\times 1\times 1\times 2.
x=\frac{-8±\sqrt{64-28\left(-8\right)}}{2\times 7}
Multiply -4 times 3+4\times 1^{2}.
x=\frac{-8±\sqrt{64+224}}{2\times 7}
Multiply -28 times -8.
x=\frac{-8±\sqrt{288}}{2\times 7}
Add 64 to 224.
x=\frac{-8±12\sqrt{2}}{2\times 7}
Take the square root of 288.
x=\frac{-8±12\sqrt{2}}{14}
Multiply 2 times 3+4\times 1^{2}.
x=\frac{12\sqrt{2}-8}{14}
Now solve the equation x=\frac{-8±12\sqrt{2}}{14} when ± is plus. Add -8 to 12\sqrt{2}.
x=\frac{6\sqrt{2}-4}{7}
Divide -8+12\sqrt{2} by 14.
x=\frac{-12\sqrt{2}-8}{14}
Now solve the equation x=\frac{-8±12\sqrt{2}}{14} when ± is minus. Subtract 12\sqrt{2} from -8.
x=\frac{-6\sqrt{2}-4}{7}
Divide -8-12\sqrt{2} by 14.
y=\frac{6\sqrt{2}-4}{7}+1
There are two solutions for x: \frac{-4+6\sqrt{2}}{7} and \frac{-4-6\sqrt{2}}{7}. Substitute \frac{-4+6\sqrt{2}}{7} for x in the equation y=x+1 to find the corresponding solution for y that satisfies both equations.
y=\frac{-6\sqrt{2}-4}{7}+1
Now substitute \frac{-4-6\sqrt{2}}{7} for x in the equation y=x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{6\sqrt{2}-4}{7}+1,x=\frac{6\sqrt{2}-4}{7}\text{ or }y=\frac{-6\sqrt{2}-4}{7}+1,x=\frac{-6\sqrt{2}-4}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}