Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+4y^{2}=12
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
y=kx+k
Consider the second equation. Use the distributive property to multiply k by x+1.
3x^{2}+4\left(kx+k\right)^{2}=12
Substitute kx+k for y in the other equation, 3x^{2}+4y^{2}=12.
3x^{2}+4\left(k^{2}x^{2}+2kkx+k^{2}\right)=12
Square kx+k.
3x^{2}+4k^{2}x^{2}+8k^{2}x+4k^{2}=12
Multiply 4 times k^{2}x^{2}+2kkx+k^{2}.
\left(4k^{2}+3\right)x^{2}+8k^{2}x+4k^{2}=12
Add 3x^{2} to 4k^{2}x^{2}.
\left(4k^{2}+3\right)x^{2}+8k^{2}x+4k^{2}-12=0
Subtract 12 from both sides of the equation.
x=\frac{-8k^{2}±\sqrt{\left(8k^{2}\right)^{2}-4\left(4k^{2}+3\right)\left(4k^{2}-12\right)}}{2\left(4k^{2}+3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4k^{2} for a, 4\times 2kk for b, and 4k^{2}-12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8k^{2}±\sqrt{64k^{4}-4\left(4k^{2}+3\right)\left(4k^{2}-12\right)}}{2\left(4k^{2}+3\right)}
Square 4\times 2kk.
x=\frac{-8k^{2}±\sqrt{64k^{4}+\left(-16k^{2}-12\right)\left(4k^{2}-12\right)}}{2\left(4k^{2}+3\right)}
Multiply -4 times 3+4k^{2}.
x=\frac{-8k^{2}±\sqrt{64k^{4}+144+144k^{2}-64k^{4}}}{2\left(4k^{2}+3\right)}
Multiply -12-16k^{2} times 4k^{2}-12.
x=\frac{-8k^{2}±\sqrt{144k^{2}+144}}{2\left(4k^{2}+3\right)}
Add 64k^{4} to 144+144k^{2}-64k^{4}.
x=\frac{-8k^{2}±12\sqrt{k^{2}+1}}{2\left(4k^{2}+3\right)}
Take the square root of 144k^{2}+144.
x=\frac{-8k^{2}±12\sqrt{k^{2}+1}}{8k^{2}+6}
Multiply 2 times 3+4k^{2}.
x=\frac{-8k^{2}+12\sqrt{k^{2}+1}}{8k^{2}+6}
Now solve the equation x=\frac{-8k^{2}±12\sqrt{k^{2}+1}}{8k^{2}+6} when ± is plus. Add -8k^{2} to 12\sqrt{k^{2}+1}.
x=\frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}
Divide -8k^{2}+12\sqrt{k^{2}+1} by 6+8k^{2}.
x=\frac{-8k^{2}-12\sqrt{k^{2}+1}}{8k^{2}+6}
Now solve the equation x=\frac{-8k^{2}±12\sqrt{k^{2}+1}}{8k^{2}+6} when ± is minus. Subtract 12\sqrt{k^{2}+1} from -8k^{2}.
x=-\frac{2\left(2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}
Divide -8k^{2}-12\sqrt{k^{2}+1} by 6+8k^{2}.
y=k\times \frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}+k
There are two solutions for x: \frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{3+4k^{2}} and -\frac{2\left(2k^{2}+3\sqrt{1+k^{2}}\right)}{3+4k^{2}}. Substitute \frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{3+4k^{2}} for x in the equation y=kx+k to find the corresponding solution for y that satisfies both equations.
y=\frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}k+k
Multiply k times \frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{3+4k^{2}}.
y=k\left(-\frac{2\left(2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}\right)+k
Now substitute -\frac{2\left(2k^{2}+3\sqrt{1+k^{2}}\right)}{3+4k^{2}} for x in the equation y=kx+k and solve to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{2\left(2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}\right)k+k
Multiply k times -\frac{2\left(2k^{2}+3\sqrt{1+k^{2}}\right)}{3+4k^{2}}.
y=\frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}k+k,x=\frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}\text{ or }y=\left(-\frac{2\left(2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}\right)k+k,x=-\frac{2\left(2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}
The system is now solved.