Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+4y^{2}=12
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
y-4x=3
Consider the second equation. Subtract 4x from both sides.
y-4x=3,3x^{2}+4y^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-4x=3
Solve y-4x=3 for y by isolating y on the left hand side of the equal sign.
y=4x+3
Subtract -4x from both sides of the equation.
3x^{2}+4\left(4x+3\right)^{2}=12
Substitute 4x+3 for y in the other equation, 3x^{2}+4y^{2}=12.
3x^{2}+4\left(16x^{2}+24x+9\right)=12
Square 4x+3.
3x^{2}+64x^{2}+96x+36=12
Multiply 4 times 16x^{2}+24x+9.
67x^{2}+96x+36=12
Add 3x^{2} to 64x^{2}.
67x^{2}+96x+24=0
Subtract 12 from both sides of the equation.
x=\frac{-96±\sqrt{96^{2}-4\times 67\times 24}}{2\times 67}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4\times 4^{2} for a, 4\times 3\times 2\times 4 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-96±\sqrt{9216-4\times 67\times 24}}{2\times 67}
Square 4\times 3\times 2\times 4.
x=\frac{-96±\sqrt{9216-268\times 24}}{2\times 67}
Multiply -4 times 3+4\times 4^{2}.
x=\frac{-96±\sqrt{9216-6432}}{2\times 67}
Multiply -268 times 24.
x=\frac{-96±\sqrt{2784}}{2\times 67}
Add 9216 to -6432.
x=\frac{-96±4\sqrt{174}}{2\times 67}
Take the square root of 2784.
x=\frac{-96±4\sqrt{174}}{134}
Multiply 2 times 3+4\times 4^{2}.
x=\frac{4\sqrt{174}-96}{134}
Now solve the equation x=\frac{-96±4\sqrt{174}}{134} when ± is plus. Add -96 to 4\sqrt{174}.
x=\frac{2\sqrt{174}-48}{67}
Divide -96+4\sqrt{174} by 134.
x=\frac{-4\sqrt{174}-96}{134}
Now solve the equation x=\frac{-96±4\sqrt{174}}{134} when ± is minus. Subtract 4\sqrt{174} from -96.
x=\frac{-2\sqrt{174}-48}{67}
Divide -96-4\sqrt{174} by 134.
y=4\times \frac{2\sqrt{174}-48}{67}+3
There are two solutions for x: \frac{-48+2\sqrt{174}}{67} and \frac{-48-2\sqrt{174}}{67}. Substitute \frac{-48+2\sqrt{174}}{67} for x in the equation y=4x+3 to find the corresponding solution for y that satisfies both equations.
y=4\times \frac{-2\sqrt{174}-48}{67}+3
Now substitute \frac{-48-2\sqrt{174}}{67} for x in the equation y=4x+3 and solve to find the corresponding solution for y that satisfies both equations.
y=4\times \frac{2\sqrt{174}-48}{67}+3,x=\frac{2\sqrt{174}-48}{67}\text{ or }y=4\times \frac{-2\sqrt{174}-48}{67}+3,x=\frac{-2\sqrt{174}-48}{67}
The system is now solved.