\left\{ \begin{array} { l } { \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 3 } = 1 } \\ { y = 4 x + 3 } \end{array} \right.
Solve for x, y
x=\frac{-2\sqrt{174}-48}{67}\approx -1.110176297\text{, }y=\frac{9-8\sqrt{174}}{67}\approx -1.440705189
x=\frac{2\sqrt{174}-48}{67}\approx -0.322659524\text{, }y=\frac{8\sqrt{174}+9}{67}\approx 1.709361905
Graph
Share
Copied to clipboard
3x^{2}+4y^{2}=12
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
y-4x=3
Consider the second equation. Subtract 4x from both sides.
y-4x=3,3x^{2}+4y^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-4x=3
Solve y-4x=3 for y by isolating y on the left hand side of the equal sign.
y=4x+3
Subtract -4x from both sides of the equation.
3x^{2}+4\left(4x+3\right)^{2}=12
Substitute 4x+3 for y in the other equation, 3x^{2}+4y^{2}=12.
3x^{2}+4\left(16x^{2}+24x+9\right)=12
Square 4x+3.
3x^{2}+64x^{2}+96x+36=12
Multiply 4 times 16x^{2}+24x+9.
67x^{2}+96x+36=12
Add 3x^{2} to 64x^{2}.
67x^{2}+96x+24=0
Subtract 12 from both sides of the equation.
x=\frac{-96±\sqrt{96^{2}-4\times 67\times 24}}{2\times 67}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4\times 4^{2} for a, 4\times 3\times 2\times 4 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-96±\sqrt{9216-4\times 67\times 24}}{2\times 67}
Square 4\times 3\times 2\times 4.
x=\frac{-96±\sqrt{9216-268\times 24}}{2\times 67}
Multiply -4 times 3+4\times 4^{2}.
x=\frac{-96±\sqrt{9216-6432}}{2\times 67}
Multiply -268 times 24.
x=\frac{-96±\sqrt{2784}}{2\times 67}
Add 9216 to -6432.
x=\frac{-96±4\sqrt{174}}{2\times 67}
Take the square root of 2784.
x=\frac{-96±4\sqrt{174}}{134}
Multiply 2 times 3+4\times 4^{2}.
x=\frac{4\sqrt{174}-96}{134}
Now solve the equation x=\frac{-96±4\sqrt{174}}{134} when ± is plus. Add -96 to 4\sqrt{174}.
x=\frac{2\sqrt{174}-48}{67}
Divide -96+4\sqrt{174} by 134.
x=\frac{-4\sqrt{174}-96}{134}
Now solve the equation x=\frac{-96±4\sqrt{174}}{134} when ± is minus. Subtract 4\sqrt{174} from -96.
x=\frac{-2\sqrt{174}-48}{67}
Divide -96-4\sqrt{174} by 134.
y=4\times \frac{2\sqrt{174}-48}{67}+3
There are two solutions for x: \frac{-48+2\sqrt{174}}{67} and \frac{-48-2\sqrt{174}}{67}. Substitute \frac{-48+2\sqrt{174}}{67} for x in the equation y=4x+3 to find the corresponding solution for y that satisfies both equations.
y=4\times \frac{-2\sqrt{174}-48}{67}+3
Now substitute \frac{-48-2\sqrt{174}}{67} for x in the equation y=4x+3 and solve to find the corresponding solution for y that satisfies both equations.
y=4\times \frac{2\sqrt{174}-48}{67}+3,x=\frac{2\sqrt{174}-48}{67}\text{ or }y=4\times \frac{-2\sqrt{174}-48}{67}+3,x=\frac{-2\sqrt{174}-48}{67}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}