\left\{ \begin{array} { l } { \frac { x ^ { 2 } } { 3 } + \frac { y ^ { 2 } } { 4 } = 1 } \\ { y = 2 x + 1 } \end{array} \right.
Solve for x, y
x=\frac{-3\sqrt{5}-3}{8}\approx -1.213525492\text{, }y=\frac{1-3\sqrt{5}}{4}\approx -1.427050983
x=\frac{3\sqrt{5}-3}{8}\approx 0.463525492\text{, }y=\frac{3\sqrt{5}+1}{4}\approx 1.927050983
Graph
Share
Copied to clipboard
4x^{2}+3y^{2}=12
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
y-2x=1
Consider the second equation. Subtract 2x from both sides.
y-2x=1,4x^{2}+3y^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-2x=1
Solve y-2x=1 for y by isolating y on the left hand side of the equal sign.
y=2x+1
Subtract -2x from both sides of the equation.
4x^{2}+3\left(2x+1\right)^{2}=12
Substitute 2x+1 for y in the other equation, 4x^{2}+3y^{2}=12.
4x^{2}+3\left(4x^{2}+4x+1\right)=12
Square 2x+1.
4x^{2}+12x^{2}+12x+3=12
Multiply 3 times 4x^{2}+4x+1.
16x^{2}+12x+3=12
Add 4x^{2} to 12x^{2}.
16x^{2}+12x-9=0
Subtract 12 from both sides of the equation.
x=\frac{-12±\sqrt{12^{2}-4\times 16\left(-9\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4+3\times 2^{2} for a, 3\times 1\times 2\times 2 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 16\left(-9\right)}}{2\times 16}
Square 3\times 1\times 2\times 2.
x=\frac{-12±\sqrt{144-64\left(-9\right)}}{2\times 16}
Multiply -4 times 4+3\times 2^{2}.
x=\frac{-12±\sqrt{144+576}}{2\times 16}
Multiply -64 times -9.
x=\frac{-12±\sqrt{720}}{2\times 16}
Add 144 to 576.
x=\frac{-12±12\sqrt{5}}{2\times 16}
Take the square root of 720.
x=\frac{-12±12\sqrt{5}}{32}
Multiply 2 times 4+3\times 2^{2}.
x=\frac{12\sqrt{5}-12}{32}
Now solve the equation x=\frac{-12±12\sqrt{5}}{32} when ± is plus. Add -12 to 12\sqrt{5}.
x=\frac{3\sqrt{5}-3}{8}
Divide -12+12\sqrt{5} by 32.
x=\frac{-12\sqrt{5}-12}{32}
Now solve the equation x=\frac{-12±12\sqrt{5}}{32} when ± is minus. Subtract 12\sqrt{5} from -12.
x=\frac{-3\sqrt{5}-3}{8}
Divide -12-12\sqrt{5} by 32.
y=2\times \frac{3\sqrt{5}-3}{8}+1
Both solutions for x are the same: \frac{-3+3\sqrt{5}}{8}. Substitute \frac{-3+3\sqrt{5}}{8} for x in the equation y=2x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{-3\sqrt{5}-3}{8}+1
Now substitute \frac{-3-3\sqrt{5}}{8} for x in the equation y=2x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{3\sqrt{5}-3}{8}+1,x=\frac{3\sqrt{5}-3}{8}\text{ or }y=2\times \frac{-3\sqrt{5}-3}{8}+1,x=\frac{-3\sqrt{5}-3}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}