Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4y^{2}=16
Consider the first equation. Multiply both sides of the equation by 16, the least common multiple of 16,4.
y-2x=9
Consider the second equation. Subtract 2x from both sides.
y=2x+9
Subtract -2x from both sides of the equation.
x^{2}+4\left(2x+9\right)^{2}=16
Substitute 2x+9 for y in the other equation, x^{2}+4y^{2}=16.
x^{2}+4\left(4x^{2}+36x+81\right)=16
Square 2x+9.
x^{2}+16x^{2}+144x+324=16
Multiply 4 times 4x^{2}+36x+81.
17x^{2}+144x+324=16
Add x^{2} to 16x^{2}.
17x^{2}+144x+308=0
Subtract 16 from both sides of the equation.
x=\frac{-144±\sqrt{144^{2}-4\times 17\times 308}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+4\times 2^{2} for a, 4\times 9\times 2\times 2 for b, and 308 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-144±\sqrt{20736-4\times 17\times 308}}{2\times 17}
Square 4\times 9\times 2\times 2.
x=\frac{-144±\sqrt{20736-68\times 308}}{2\times 17}
Multiply -4 times 1+4\times 2^{2}.
x=\frac{-144±\sqrt{20736-20944}}{2\times 17}
Multiply -68 times 308.
x=\frac{-144±\sqrt{-208}}{2\times 17}
Add 20736 to -20944.
x=\frac{-144±4\sqrt{13}i}{2\times 17}
Take the square root of -208.
x=\frac{-144±4\sqrt{13}i}{34}
Multiply 2 times 1+4\times 2^{2}.
x=\frac{-144+4\sqrt{13}i}{34}
Now solve the equation x=\frac{-144±4\sqrt{13}i}{34} when ± is plus. Add -144 to 4i\sqrt{13}.
x=\frac{-72+2\sqrt{13}i}{17}
Divide -144+4i\sqrt{13} by 34.
x=\frac{-4\sqrt{13}i-144}{34}
Now solve the equation x=\frac{-144±4\sqrt{13}i}{34} when ± is minus. Subtract 4i\sqrt{13} from -144.
x=\frac{-2\sqrt{13}i-72}{17}
Divide -144-4i\sqrt{13} by 34.
y=2\times \frac{-72+2\sqrt{13}i}{17}+9
There are two solutions for x: \frac{-72+2i\sqrt{13}}{17} and \frac{-72-2i\sqrt{13}}{17}. Substitute \frac{-72+2i\sqrt{13}}{17} for x in the equation y=2x+9 to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{-2\sqrt{13}i-72}{17}+9
Now substitute \frac{-72-2i\sqrt{13}}{17} for x in the equation y=2x+9 and solve to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{-72+2\sqrt{13}i}{17}+9,x=\frac{-72+2\sqrt{13}i}{17}\text{ or }y=2\times \frac{-2\sqrt{13}i-72}{17}+9,x=\frac{-2\sqrt{13}i-72}{17}
The system is now solved.