Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}\left(x+2\right)-2\left(y-1\right)=0,x+y=-1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{3}\left(x+2\right)-2\left(y-1\right)=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{3}x+\frac{2}{3}-2\left(y-1\right)=0
Multiply \frac{1}{3} times x+2.
\frac{1}{3}x+\frac{2}{3}-2y+2=0
Multiply -2 times y-1.
\frac{1}{3}x-2y+\frac{8}{3}=0
Add \frac{2}{3} to 2.
\frac{1}{3}x-2y=-\frac{8}{3}
Subtract \frac{8}{3} from both sides of the equation.
\frac{1}{3}x=2y-\frac{8}{3}
Add 2y to both sides of the equation.
x=3\left(2y-\frac{8}{3}\right)
Multiply both sides by 3.
x=6y-8
Multiply 3 times 2y-\frac{8}{3}.
6y-8+y=-1
Substitute 6y-8 for x in the other equation, x+y=-1.
7y-8=-1
Add 6y to y.
7y=7
Add 8 to both sides of the equation.
y=1
Divide both sides by 7.
x=6-8
Substitute 1 for y in x=6y-8. Because the resulting equation contains only one variable, you can solve for x directly.
x=-2
Add -8 to 6.
x=-2,y=1
The system is now solved.
\frac{1}{3}\left(x+2\right)-2\left(y-1\right)=0,x+y=-1
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{3}\left(x+2\right)-2\left(y-1\right)=0
Simplify the first equation to put it in standard form.
\frac{1}{3}x+\frac{2}{3}-2\left(y-1\right)=0
Multiply \frac{1}{3} times x+2.
\frac{1}{3}x+\frac{2}{3}-2y+2=0
Multiply -2 times y-1.
\frac{1}{3}x-2y+\frac{8}{3}=0
Add \frac{2}{3} to 2.
\frac{1}{3}x-2y=-\frac{8}{3}
Subtract \frac{8}{3} from both sides of the equation.
\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{1}{3}-\left(-2\right)}&-\frac{-2}{\frac{1}{3}-\left(-2\right)}\\-\frac{1}{\frac{1}{3}-\left(-2\right)}&\frac{\frac{1}{3}}{\frac{1}{3}-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{6}{7}\\-\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-\frac{8}{3}\right)+\frac{6}{7}\left(-1\right)\\-\frac{3}{7}\left(-\frac{8}{3}\right)+\frac{1}{7}\left(-1\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
Do the arithmetic.
x=-2,y=1
Extract the matrix elements x and y.