\left\{ \begin{array} { l } { \frac { x + 2 } { 3 } - 2 ( y - 1 ) = 0 } \\ { x + y = - 1 } \end{array} \right.
Solve for x, y
x=-2
y=1
Graph
Share
Copied to clipboard
\frac{1}{3}\left(x+2\right)-2\left(y-1\right)=0,x+y=-1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{3}\left(x+2\right)-2\left(y-1\right)=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{3}x+\frac{2}{3}-2\left(y-1\right)=0
Multiply \frac{1}{3} times x+2.
\frac{1}{3}x+\frac{2}{3}-2y+2=0
Multiply -2 times y-1.
\frac{1}{3}x-2y+\frac{8}{3}=0
Add \frac{2}{3} to 2.
\frac{1}{3}x-2y=-\frac{8}{3}
Subtract \frac{8}{3} from both sides of the equation.
\frac{1}{3}x=2y-\frac{8}{3}
Add 2y to both sides of the equation.
x=3\left(2y-\frac{8}{3}\right)
Multiply both sides by 3.
x=6y-8
Multiply 3 times 2y-\frac{8}{3}.
6y-8+y=-1
Substitute 6y-8 for x in the other equation, x+y=-1.
7y-8=-1
Add 6y to y.
7y=7
Add 8 to both sides of the equation.
y=1
Divide both sides by 7.
x=6-8
Substitute 1 for y in x=6y-8. Because the resulting equation contains only one variable, you can solve for x directly.
x=-2
Add -8 to 6.
x=-2,y=1
The system is now solved.
\frac{1}{3}\left(x+2\right)-2\left(y-1\right)=0,x+y=-1
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{3}\left(x+2\right)-2\left(y-1\right)=0
Simplify the first equation to put it in standard form.
\frac{1}{3}x+\frac{2}{3}-2\left(y-1\right)=0
Multiply \frac{1}{3} times x+2.
\frac{1}{3}x+\frac{2}{3}-2y+2=0
Multiply -2 times y-1.
\frac{1}{3}x-2y+\frac{8}{3}=0
Add \frac{2}{3} to 2.
\frac{1}{3}x-2y=-\frac{8}{3}
Subtract \frac{8}{3} from both sides of the equation.
\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{1}{3}-\left(-2\right)}&-\frac{-2}{\frac{1}{3}-\left(-2\right)}\\-\frac{1}{\frac{1}{3}-\left(-2\right)}&\frac{\frac{1}{3}}{\frac{1}{3}-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{6}{7}\\-\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-\frac{8}{3}\\-1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-\frac{8}{3}\right)+\frac{6}{7}\left(-1\right)\\-\frac{3}{7}\left(-\frac{8}{3}\right)+\frac{1}{7}\left(-1\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
Do the arithmetic.
x=-2,y=1
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}