\left\{ \begin{array} { l } { \frac { x + 1 } { 3 } + \frac { y } { 2 } = 1 } \\ { \frac { x } { 2 } - \frac { 1 } { 4 } y = 2 } \end{array} \right.
Solve for x, y
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
y=-1
Graph
Share
Copied to clipboard
\frac{1}{3}\left(x+1\right)+\frac{1}{2}y=1,\frac{1}{2}x-\frac{1}{4}y=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{3}\left(x+1\right)+\frac{1}{2}y=1
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{3}x+\frac{1}{3}+\frac{1}{2}y=1
Multiply \frac{1}{3} times x+1.
\frac{1}{3}x+\frac{1}{2}y=\frac{2}{3}
Subtract \frac{1}{3} from both sides of the equation.
\frac{1}{3}x=-\frac{1}{2}y+\frac{2}{3}
Subtract \frac{y}{2} from both sides of the equation.
x=3\left(-\frac{1}{2}y+\frac{2}{3}\right)
Multiply both sides by 3.
x=-\frac{3}{2}y+2
Multiply 3 times -\frac{y}{2}+\frac{2}{3}.
\frac{1}{2}\left(-\frac{3}{2}y+2\right)-\frac{1}{4}y=2
Substitute -\frac{3y}{2}+2 for x in the other equation, \frac{1}{2}x-\frac{1}{4}y=2.
-\frac{3}{4}y+1-\frac{1}{4}y=2
Multiply \frac{1}{2} times -\frac{3y}{2}+2.
-y+1=2
Add -\frac{3y}{4} to -\frac{y}{4}.
-y=1
Subtract 1 from both sides of the equation.
y=-1
Divide both sides by -1.
x=-\frac{3}{2}\left(-1\right)+2
Substitute -1 for y in x=-\frac{3}{2}y+2. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{3}{2}+2
Multiply -\frac{3}{2} times -1.
x=\frac{7}{2}
Add 2 to \frac{3}{2}.
x=\frac{7}{2},y=-1
The system is now solved.
\frac{1}{3}\left(x+1\right)+\frac{1}{2}y=1,\frac{1}{2}x-\frac{1}{4}y=2
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{3}\left(x+1\right)+\frac{1}{2}y=1
Simplify the first equation to put it in standard form.
\frac{1}{3}x+\frac{1}{3}+\frac{1}{2}y=1
Multiply \frac{1}{3} times x+1.
\frac{1}{3}x+\frac{1}{2}y=\frac{2}{3}
Subtract \frac{1}{3} from both sides of the equation.
\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\\2\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}\\2\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}\\2\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}\\2\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{4}}{\frac{1}{3}\left(-\frac{1}{4}\right)-\frac{1}{2}\times \frac{1}{2}}&-\frac{\frac{1}{2}}{\frac{1}{3}\left(-\frac{1}{4}\right)-\frac{1}{2}\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{3}\left(-\frac{1}{4}\right)-\frac{1}{2}\times \frac{1}{2}}&\frac{\frac{1}{3}}{\frac{1}{3}\left(-\frac{1}{4}\right)-\frac{1}{2}\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}\frac{2}{3}\\2\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{3}{2}\\\frac{3}{2}&-1\end{matrix}\right)\left(\begin{matrix}\frac{2}{3}\\2\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times \frac{2}{3}+\frac{3}{2}\times 2\\\frac{3}{2}\times \frac{2}{3}-2\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\\-1\end{matrix}\right)
Do the arithmetic.
x=\frac{7}{2},y=-1
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}