\left\{ \begin{array} { l } { \frac { m } { 3 } - \frac { n } { 4 } = 3 } \\ { \frac { m } { 2 } - \frac { n } { 3 } = 13 } \end{array} \right.
Solve for m, n
m=162
n=204
Share
Copied to clipboard
4m-3n=36
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
3m-2n=78
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
4m-3n=36,3m-2n=78
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4m-3n=36
Choose one of the equations and solve it for m by isolating m on the left hand side of the equal sign.
4m=3n+36
Add 3n to both sides of the equation.
m=\frac{1}{4}\left(3n+36\right)
Divide both sides by 4.
m=\frac{3}{4}n+9
Multiply \frac{1}{4} times 36+3n.
3\left(\frac{3}{4}n+9\right)-2n=78
Substitute \frac{3n}{4}+9 for m in the other equation, 3m-2n=78.
\frac{9}{4}n+27-2n=78
Multiply 3 times \frac{3n}{4}+9.
\frac{1}{4}n+27=78
Add \frac{9n}{4} to -2n.
\frac{1}{4}n=51
Subtract 27 from both sides of the equation.
n=204
Multiply both sides by 4.
m=\frac{3}{4}\times 204+9
Substitute 204 for n in m=\frac{3}{4}n+9. Because the resulting equation contains only one variable, you can solve for m directly.
m=153+9
Multiply \frac{3}{4} times 204.
m=162
Add 9 to 153.
m=162,n=204
The system is now solved.
4m-3n=36
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
3m-2n=78
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
4m-3n=36,3m-2n=78
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}36\\78\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}4&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}36\\78\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&-3\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}36\\78\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}36\\78\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{4\left(-2\right)-\left(-3\times 3\right)}&-\frac{-3}{4\left(-2\right)-\left(-3\times 3\right)}\\-\frac{3}{4\left(-2\right)-\left(-3\times 3\right)}&\frac{4}{4\left(-2\right)-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}36\\78\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-2&3\\-3&4\end{matrix}\right)\left(\begin{matrix}36\\78\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-2\times 36+3\times 78\\-3\times 36+4\times 78\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}162\\204\end{matrix}\right)
Do the arithmetic.
m=162,n=204
Extract the matrix elements m and n.
4m-3n=36
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
3m-2n=78
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
4m-3n=36,3m-2n=78
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 4m+3\left(-3\right)n=3\times 36,4\times 3m+4\left(-2\right)n=4\times 78
To make 4m and 3m equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 4.
12m-9n=108,12m-8n=312
Simplify.
12m-12m-9n+8n=108-312
Subtract 12m-8n=312 from 12m-9n=108 by subtracting like terms on each side of the equal sign.
-9n+8n=108-312
Add 12m to -12m. Terms 12m and -12m cancel out, leaving an equation with only one variable that can be solved.
-n=108-312
Add -9n to 8n.
-n=-204
Add 108 to -312.
n=204
Divide both sides by -1.
3m-2\times 204=78
Substitute 204 for n in 3m-2n=78. Because the resulting equation contains only one variable, you can solve for m directly.
3m-408=78
Multiply -2 times 204.
3m=486
Add 408 to both sides of the equation.
m=162
Divide both sides by 3.
m=162,n=204
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}