Skip to main content
Solve for m, n
Tick mark Image

Similar Problems from Web Search

Share

4\left(m+n\right)-3\left(n-m\right)=24
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
4m+4n-3\left(n-m\right)=24
Use the distributive property to multiply 4 by m+n.
4m+4n-3n+3m=24
Use the distributive property to multiply -3 by n-m.
4m+n+3m=24
Combine 4n and -3n to get n.
7m+n=24
Combine 4m and 3m to get 7m.
12m+n=42
Consider the second equation. Multiply both sides of the equation by 3.
7m+n=24,12m+n=42
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
7m+n=24
Choose one of the equations and solve it for m by isolating m on the left hand side of the equal sign.
7m=-n+24
Subtract n from both sides of the equation.
m=\frac{1}{7}\left(-n+24\right)
Divide both sides by 7.
m=-\frac{1}{7}n+\frac{24}{7}
Multiply \frac{1}{7} times -n+24.
12\left(-\frac{1}{7}n+\frac{24}{7}\right)+n=42
Substitute \frac{-n+24}{7} for m in the other equation, 12m+n=42.
-\frac{12}{7}n+\frac{288}{7}+n=42
Multiply 12 times \frac{-n+24}{7}.
-\frac{5}{7}n+\frac{288}{7}=42
Add -\frac{12n}{7} to n.
-\frac{5}{7}n=\frac{6}{7}
Subtract \frac{288}{7} from both sides of the equation.
n=-\frac{6}{5}
Divide both sides of the equation by -\frac{5}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
m=-\frac{1}{7}\left(-\frac{6}{5}\right)+\frac{24}{7}
Substitute -\frac{6}{5} for n in m=-\frac{1}{7}n+\frac{24}{7}. Because the resulting equation contains only one variable, you can solve for m directly.
m=\frac{6}{35}+\frac{24}{7}
Multiply -\frac{1}{7} times -\frac{6}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
m=\frac{18}{5}
Add \frac{24}{7} to \frac{6}{35} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=\frac{18}{5},n=-\frac{6}{5}
The system is now solved.
4\left(m+n\right)-3\left(n-m\right)=24
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
4m+4n-3\left(n-m\right)=24
Use the distributive property to multiply 4 by m+n.
4m+4n-3n+3m=24
Use the distributive property to multiply -3 by n-m.
4m+n+3m=24
Combine 4n and -3n to get n.
7m+n=24
Combine 4m and 3m to get 7m.
12m+n=42
Consider the second equation. Multiply both sides of the equation by 3.
7m+n=24,12m+n=42
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}7&1\\12&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}24\\42\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}7&1\\12&1\end{matrix}\right))\left(\begin{matrix}7&1\\12&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\12&1\end{matrix}\right))\left(\begin{matrix}24\\42\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}7&1\\12&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\12&1\end{matrix}\right))\left(\begin{matrix}24\\42\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\12&1\end{matrix}\right))\left(\begin{matrix}24\\42\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-12}&-\frac{1}{7-12}\\-\frac{12}{7-12}&\frac{7}{7-12}\end{matrix}\right)\left(\begin{matrix}24\\42\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\\frac{12}{5}&-\frac{7}{5}\end{matrix}\right)\left(\begin{matrix}24\\42\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 24+\frac{1}{5}\times 42\\\frac{12}{5}\times 24-\frac{7}{5}\times 42\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}\\-\frac{6}{5}\end{matrix}\right)
Do the arithmetic.
m=\frac{18}{5},n=-\frac{6}{5}
Extract the matrix elements m and n.
4\left(m+n\right)-3\left(n-m\right)=24
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
4m+4n-3\left(n-m\right)=24
Use the distributive property to multiply 4 by m+n.
4m+4n-3n+3m=24
Use the distributive property to multiply -3 by n-m.
4m+n+3m=24
Combine 4n and -3n to get n.
7m+n=24
Combine 4m and 3m to get 7m.
12m+n=42
Consider the second equation. Multiply both sides of the equation by 3.
7m+n=24,12m+n=42
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7m-12m+n-n=24-42
Subtract 12m+n=42 from 7m+n=24 by subtracting like terms on each side of the equal sign.
7m-12m=24-42
Add n to -n. Terms n and -n cancel out, leaving an equation with only one variable that can be solved.
-5m=24-42
Add 7m to -12m.
-5m=-18
Add 24 to -42.
m=\frac{18}{5}
Divide both sides by -5.
12\times \frac{18}{5}+n=42
Substitute \frac{18}{5} for m in 12m+n=42. Because the resulting equation contains only one variable, you can solve for n directly.
\frac{216}{5}+n=42
Multiply 12 times \frac{18}{5}.
n=-\frac{6}{5}
Subtract \frac{216}{5} from both sides of the equation.
m=\frac{18}{5},n=-\frac{6}{5}
The system is now solved.