\left\{ \begin{array} { l } { \frac { 7 x - 3 y } { 3 } + \frac { 2 x - y } { 2 } = - x - \frac { 2 x + y } { 2 } } \\ { \frac { 2 x - y - 1 } { 5 } + \frac { x - 2 y + 6 } { 15 } + 1 = \frac { 3 x - y + 4 } { 3 } } \end{array} \right.
Solve for x, y
x=-\frac{1}{4}=-0.25
y = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Graph
Share
Copied to clipboard
2\left(7x-3y\right)+3\left(2x-y\right)=-6x-3\left(2x+y\right)
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 3,2.
14x-6y+3\left(2x-y\right)=-6x-3\left(2x+y\right)
Use the distributive property to multiply 2 by 7x-3y.
14x-6y+6x-3y=-6x-3\left(2x+y\right)
Use the distributive property to multiply 3 by 2x-y.
20x-6y-3y=-6x-3\left(2x+y\right)
Combine 14x and 6x to get 20x.
20x-9y=-6x-3\left(2x+y\right)
Combine -6y and -3y to get -9y.
20x-9y=-6x-6x-3y
Use the distributive property to multiply -3 by 2x+y.
20x-9y=-12x-3y
Combine -6x and -6x to get -12x.
20x-9y+12x=-3y
Add 12x to both sides.
32x-9y=-3y
Combine 20x and 12x to get 32x.
32x-9y+3y=0
Add 3y to both sides.
32x-6y=0
Combine -9y and 3y to get -6y.
3\left(2x-y-1\right)+x-2y+6+15=5\left(3x-y+4\right)
Consider the second equation. Multiply both sides of the equation by 15, the least common multiple of 5,15,3.
6x-3y-3+x-2y+6+15=5\left(3x-y+4\right)
Use the distributive property to multiply 3 by 2x-y-1.
7x-3y-3-2y+6+15=5\left(3x-y+4\right)
Combine 6x and x to get 7x.
7x-5y-3+6+15=5\left(3x-y+4\right)
Combine -3y and -2y to get -5y.
7x-5y+3+15=5\left(3x-y+4\right)
Add -3 and 6 to get 3.
7x-5y+18=5\left(3x-y+4\right)
Add 3 and 15 to get 18.
7x-5y+18=15x-5y+20
Use the distributive property to multiply 5 by 3x-y+4.
7x-5y+18-15x=-5y+20
Subtract 15x from both sides.
-8x-5y+18=-5y+20
Combine 7x and -15x to get -8x.
-8x-5y+18+5y=20
Add 5y to both sides.
-8x+18=20
Combine -5y and 5y to get 0.
-8x=20-18
Subtract 18 from both sides.
-8x=2
Subtract 18 from 20 to get 2.
x=\frac{2}{-8}
Divide both sides by -8.
x=-\frac{1}{4}
Reduce the fraction \frac{2}{-8} to lowest terms by extracting and canceling out 2.
32\left(-\frac{1}{4}\right)-6y=0
Consider the first equation. Insert the known values of variables into the equation.
-8-6y=0
Multiply 32 and -\frac{1}{4} to get -8.
-6y=8
Add 8 to both sides. Anything plus zero gives itself.
y=\frac{8}{-6}
Divide both sides by -6.
y=-\frac{4}{3}
Reduce the fraction \frac{8}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{1}{4} y=-\frac{4}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}