\left\{ \begin{array} { l } { \frac { 5 } { 2 } + \frac { x } { 5 } = - 4 } \\ { \frac { y } { 3 } + \frac { x } { 6 } = \frac { 1 } { 6 } } \end{array} \right.
Solve for x, y
x = -\frac{65}{2} = -32\frac{1}{2} = -32.5
y = \frac{67}{4} = 16\frac{3}{4} = 16.75
Graph
Share
Copied to clipboard
25+2x=-40
Consider the first equation. Multiply both sides of the equation by 10, the least common multiple of 2,5.
2x=-40-25
Subtract 25 from both sides.
2x=-65
Subtract 25 from -40 to get -65.
x=-\frac{65}{2}
Divide both sides by 2.
\frac{y}{3}+\frac{-\frac{65}{2}}{6}=\frac{1}{6}
Consider the second equation. Insert the known values of variables into the equation.
2y-\frac{65}{2}=1
Multiply both sides of the equation by 6, the least common multiple of 3,6.
2y=1+\frac{65}{2}
Add \frac{65}{2} to both sides.
2y=\frac{67}{2}
Add 1 and \frac{65}{2} to get \frac{67}{2}.
y=\frac{\frac{67}{2}}{2}
Divide both sides by 2.
y=\frac{67}{2\times 2}
Express \frac{\frac{67}{2}}{2} as a single fraction.
y=\frac{67}{4}
Multiply 2 and 2 to get 4.
x=-\frac{65}{2} y=\frac{67}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}