\left\{ \begin{array} { l } { \frac { 5 \cdot ( x + 1 ) } { 3 } = 3 } \\ { 3 \cdot ( x + 1 ) - y = 7 } \end{array} \right.
Solve for x, y
x=\frac{4}{5}=0.8
y = -\frac{8}{5} = -1\frac{3}{5} = -1.6
Graph
Share
Copied to clipboard
5\left(x+1\right)=3\times 3
Consider the first equation. Multiply both sides by 3.
5x+5=3\times 3
Use the distributive property to multiply 5 by x+1.
5x+5=9
Multiply 3 and 3 to get 9.
5x=9-5
Subtract 5 from both sides.
5x=4
Subtract 5 from 9 to get 4.
x=\frac{4}{5}
Divide both sides by 5.
3\left(\frac{4}{5}+1\right)-y=7
Consider the second equation. Insert the known values of variables into the equation.
3\times \frac{9}{5}-y=7
Add \frac{4}{5} and 1 to get \frac{9}{5}.
\frac{27}{5}-y=7
Multiply 3 and \frac{9}{5} to get \frac{27}{5}.
-y=7-\frac{27}{5}
Subtract \frac{27}{5} from both sides.
-y=\frac{8}{5}
Subtract \frac{27}{5} from 7 to get \frac{8}{5}.
y=\frac{\frac{8}{5}}{-1}
Divide both sides by -1.
y=\frac{8}{5\left(-1\right)}
Express \frac{\frac{8}{5}}{-1} as a single fraction.
y=\frac{8}{-5}
Multiply 5 and -1 to get -5.
y=-\frac{8}{5}
Fraction \frac{8}{-5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
x=\frac{4}{5} y=-\frac{8}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}