Skip to main content
Solve for a, c, b, x
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(-\frac{3}{2}\right)\times \frac{9}{2}-\left(\frac{9}{2}\right)^{2}}{4\left(-\frac{3}{2}\right)}=x
Consider the first equation. Insert the known values of variables into the equation.
\frac{-6\times \frac{9}{2}-\left(\frac{9}{2}\right)^{2}}{4\left(-\frac{3}{2}\right)}=x
Multiply 4 and -\frac{3}{2} to get -6.
\frac{-27-\left(\frac{9}{2}\right)^{2}}{4\left(-\frac{3}{2}\right)}=x
Multiply -6 and \frac{9}{2} to get -27.
\frac{-27-\frac{81}{4}}{4\left(-\frac{3}{2}\right)}=x
Calculate \frac{9}{2} to the power of 2 and get \frac{81}{4}.
\frac{-\frac{189}{4}}{4\left(-\frac{3}{2}\right)}=x
Subtract \frac{81}{4} from -27 to get -\frac{189}{4}.
\frac{-\frac{189}{4}}{-6}=x
Multiply 4 and -\frac{3}{2} to get -6.
\frac{-189}{4\left(-6\right)}=x
Express \frac{-\frac{189}{4}}{-6} as a single fraction.
\frac{-189}{-24}=x
Multiply 4 and -6 to get -24.
\frac{63}{8}=x
Reduce the fraction \frac{-189}{-24} to lowest terms by extracting and canceling out -3.
x=\frac{63}{8}
Swap sides so that all variable terms are on the left hand side.
a=-\frac{3}{2} c=\frac{9}{2} b=\frac{9}{2} x=\frac{63}{8}
The system is now solved.