Skip to main content
Solve for a, c, b, x
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(-\frac{3}{2}\right)\times \frac{9}{2}-\left(\frac{1}{2}\right)^{2}}{4\left(-\frac{3}{2}\right)}=x
Consider the first equation. Insert the known values of variables into the equation.
\frac{-6\times \frac{9}{2}-\left(\frac{1}{2}\right)^{2}}{4\left(-\frac{3}{2}\right)}=x
Multiply 4 and -\frac{3}{2} to get -6.
\frac{-27-\left(\frac{1}{2}\right)^{2}}{4\left(-\frac{3}{2}\right)}=x
Multiply -6 and \frac{9}{2} to get -27.
\frac{-27-\frac{1}{4}}{4\left(-\frac{3}{2}\right)}=x
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{-\frac{109}{4}}{4\left(-\frac{3}{2}\right)}=x
Subtract \frac{1}{4} from -27 to get -\frac{109}{4}.
\frac{-\frac{109}{4}}{-6}=x
Multiply 4 and -\frac{3}{2} to get -6.
\frac{-109}{4\left(-6\right)}=x
Express \frac{-\frac{109}{4}}{-6} as a single fraction.
\frac{-109}{-24}=x
Multiply 4 and -6 to get -24.
\frac{109}{24}=x
Fraction \frac{-109}{-24} can be simplified to \frac{109}{24} by removing the negative sign from both the numerator and the denominator.
x=\frac{109}{24}
Swap sides so that all variable terms are on the left hand side.
a=-\frac{3}{2} c=\frac{9}{2} b=\frac{1}{2} x=\frac{109}{24}
The system is now solved.