\left\{ \begin{array} { l } { \frac { 3 x - y } { 2 } + x = 0 } \\ { \frac { 2 x - y } { 3 } + y = 4 } \end{array} \right.
Solve for x, y
x=1
y=5
Graph
Share
Copied to clipboard
3x-y+2x=0
Consider the first equation. Multiply both sides of the equation by 2.
5x-y=0
Combine 3x and 2x to get 5x.
2x-y+3y=12
Consider the second equation. Multiply both sides of the equation by 3.
2x+2y=12
Combine -y and 3y to get 2y.
5x-y=0,2x+2y=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x-y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=y
Add y to both sides of the equation.
x=\frac{1}{5}y
Divide both sides by 5.
2\times \frac{1}{5}y+2y=12
Substitute \frac{y}{5} for x in the other equation, 2x+2y=12.
\frac{2}{5}y+2y=12
Multiply 2 times \frac{y}{5}.
\frac{12}{5}y=12
Add \frac{2y}{5} to 2y.
y=5
Divide both sides of the equation by \frac{12}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{1}{5}\times 5
Substitute 5 for y in x=\frac{1}{5}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=1
Multiply \frac{1}{5} times 5.
x=1,y=5
The system is now solved.
3x-y+2x=0
Consider the first equation. Multiply both sides of the equation by 2.
5x-y=0
Combine 3x and 2x to get 5x.
2x-y+3y=12
Consider the second equation. Multiply both sides of the equation by 3.
2x+2y=12
Combine -y and 3y to get 2y.
5x-y=0,2x+2y=12
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\12\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-1\\2&2\end{matrix}\right))\left(\begin{matrix}5&-1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&2\end{matrix}\right))\left(\begin{matrix}0\\12\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-1\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&2\end{matrix}\right))\left(\begin{matrix}0\\12\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&2\end{matrix}\right))\left(\begin{matrix}0\\12\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-2\right)}&-\frac{-1}{5\times 2-\left(-2\right)}\\-\frac{2}{5\times 2-\left(-2\right)}&\frac{5}{5\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}0\\12\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{12}\\-\frac{1}{6}&\frac{5}{12}\end{matrix}\right)\left(\begin{matrix}0\\12\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 12\\\frac{5}{12}\times 12\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
Do the arithmetic.
x=1,y=5
Extract the matrix elements x and y.
3x-y+2x=0
Consider the first equation. Multiply both sides of the equation by 2.
5x-y=0
Combine 3x and 2x to get 5x.
2x-y+3y=12
Consider the second equation. Multiply both sides of the equation by 3.
2x+2y=12
Combine -y and 3y to get 2y.
5x-y=0,2x+2y=12
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 5x+2\left(-1\right)y=0,5\times 2x+5\times 2y=5\times 12
To make 5x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 5.
10x-2y=0,10x+10y=60
Simplify.
10x-10x-2y-10y=-60
Subtract 10x+10y=60 from 10x-2y=0 by subtracting like terms on each side of the equal sign.
-2y-10y=-60
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
-12y=-60
Add -2y to -10y.
y=5
Divide both sides by -12.
2x+2\times 5=12
Substitute 5 for y in 2x+2y=12. Because the resulting equation contains only one variable, you can solve for x directly.
2x+10=12
Multiply 2 times 5.
2x=2
Subtract 10 from both sides of the equation.
x=1
Divide both sides by 2.
x=1,y=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}