\left\{ \begin{array} { l } { \frac { 3 x + 11 } { 4 } - \frac { y + 1 } { 3 } = \frac { 23 } { 6 } } \\ { \frac { 2 x - 1 } { 2 } - \frac { 4 + 3 } { 4 } = \frac { 1 } { 4 } } \end{array} \right.
Solve for x, y
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
y = \frac{11}{8} = 1\frac{3}{8} = 1.375
Graph
Share
Copied to clipboard
2\left(2x-1\right)-\left(4+3\right)=1
Consider the second equation. Multiply both sides of the equation by 4, the least common multiple of 2,4.
4x-2-\left(4+3\right)=1
Use the distributive property to multiply 2 by 2x-1.
4x-2-7=1
Add 4 and 3 to get 7.
4x-9=1
Subtract 7 from -2 to get -9.
4x=1+9
Add 9 to both sides.
4x=10
Add 1 and 9 to get 10.
x=\frac{10}{4}
Divide both sides by 4.
x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
\frac{3\times \frac{5}{2}+11}{4}-\frac{y+1}{3}=\frac{23}{6}
Consider the first equation. Insert the known values of variables into the equation.
3\left(3\times \frac{5}{2}+11\right)-4\left(y+1\right)=46
Multiply both sides of the equation by 12, the least common multiple of 4,3,6.
3\left(\frac{15}{2}+11\right)-4\left(y+1\right)=46
Multiply 3 and \frac{5}{2} to get \frac{15}{2}.
3\times \frac{37}{2}-4\left(y+1\right)=46
Add \frac{15}{2} and 11 to get \frac{37}{2}.
\frac{111}{2}-4\left(y+1\right)=46
Multiply 3 and \frac{37}{2} to get \frac{111}{2}.
\frac{111}{2}-4y-4=46
Use the distributive property to multiply -4 by y+1.
\frac{103}{2}-4y=46
Subtract 4 from \frac{111}{2} to get \frac{103}{2}.
-4y=46-\frac{103}{2}
Subtract \frac{103}{2} from both sides.
-4y=-\frac{11}{2}
Subtract \frac{103}{2} from 46 to get -\frac{11}{2}.
y=\frac{-\frac{11}{2}}{-4}
Divide both sides by -4.
y=\frac{-11}{2\left(-4\right)}
Express \frac{-\frac{11}{2}}{-4} as a single fraction.
y=\frac{-11}{-8}
Multiply 2 and -4 to get -8.
y=\frac{11}{8}
Fraction \frac{-11}{-8} can be simplified to \frac{11}{8} by removing the negative sign from both the numerator and the denominator.
x=\frac{5}{2} y=\frac{11}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}