\left\{ \begin{array} { l } { \frac { 3 } { 5 } x + \frac { 4 } { 5 } y = \frac { 2 \sqrt { 5 } } { 5 } } \\ { x ^ { 2 } + y ^ { 2 } = 1 } \end{array} \right.
Solve for x, y
x=\frac{2\sqrt{5}}{5}\approx 0.894427191\text{, }y=\frac{\sqrt{5}}{5}\approx 0.447213595
x=\frac{2\sqrt{5}}{25}\approx 0.178885438\text{, }y=\frac{11\sqrt{5}}{25}\approx 0.98386991
Graph
Share
Copied to clipboard
\frac{3}{5}x+\frac{4}{5}y=\frac{2\sqrt{5}}{5},y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{3}{5}x+\frac{4}{5}y=\frac{2\sqrt{5}}{5}
Solve \frac{3}{5}x+\frac{4}{5}y=\frac{2\sqrt{5}}{5} for x by isolating x on the left hand side of the equal sign.
\frac{3}{5}x=-\frac{4}{5}y+\frac{2\sqrt{5}}{5}
Subtract \frac{4}{5}y from both sides of the equation.
x=-\frac{4}{3}y+\frac{2\sqrt{5}}{3}
Divide both sides of the equation by \frac{3}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\left(-\frac{4}{3}y+\frac{2\sqrt{5}}{3}\right)^{2}=1
Substitute -\frac{4}{3}y+\frac{2\sqrt{5}}{3} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+\frac{16}{9}y^{2}+\left(-\frac{8}{3}\times \frac{2\sqrt{5}}{3}\right)y+\left(\frac{2\sqrt{5}}{3}\right)^{2}=1
Square -\frac{4}{3}y+\frac{2\sqrt{5}}{3}.
\frac{25}{9}y^{2}+\left(-\frac{8}{3}\times \frac{2\sqrt{5}}{3}\right)y+\left(\frac{2\sqrt{5}}{3}\right)^{2}=1
Add y^{2} to \frac{16}{9}y^{2}.
\frac{25}{9}y^{2}+\left(-\frac{8}{3}\times \frac{2\sqrt{5}}{3}\right)y+\left(\frac{2\sqrt{5}}{3}\right)^{2}-1=0
Subtract 1 from both sides of the equation.
y=\frac{-\left(-\frac{8}{3}\times \frac{2\sqrt{5}}{3}\right)±\sqrt{\left(-\frac{8}{3}\times \frac{2\sqrt{5}}{3}\right)^{2}-4\times \frac{25}{9}\times \frac{11}{9}}}{2\times \frac{25}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{4}{3}\right)^{2} for a, 1\left(-\frac{4}{3}\right)\times 2\times \frac{2\sqrt{5}}{3} for b, and \frac{11}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{8}{3}\times \frac{2\sqrt{5}}{3}\right)±\sqrt{\frac{1280}{81}-4\times \frac{25}{9}\times \frac{11}{9}}}{2\times \frac{25}{9}}
Square 1\left(-\frac{4}{3}\right)\times 2\times \frac{2\sqrt{5}}{3}.
y=\frac{-\left(-\frac{8}{3}\times \frac{2\sqrt{5}}{3}\right)±\sqrt{\frac{1280}{81}-\frac{100}{9}\times \frac{11}{9}}}{2\times \frac{25}{9}}
Multiply -4 times 1+1\left(-\frac{4}{3}\right)^{2}.
y=\frac{-\left(-\frac{8}{3}\times \frac{2\sqrt{5}}{3}\right)±\sqrt{\frac{1280-1100}{81}}}{2\times \frac{25}{9}}
Multiply -\frac{100}{9} times \frac{11}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{8}{3}\times \frac{2\sqrt{5}}{3}\right)±\sqrt{\frac{20}{9}}}{2\times \frac{25}{9}}
Add \frac{1280}{81} to -\frac{1100}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{8}{3}\times \frac{2\sqrt{5}}{3}\right)±\frac{2\sqrt{5}}{3}}{2\times \frac{25}{9}}
Take the square root of \frac{20}{9}.
y=\frac{\frac{16\sqrt{5}}{9}±\frac{2\sqrt{5}}{3}}{2\times \frac{25}{9}}
The opposite of 1\left(-\frac{4}{3}\right)\times 2\times \frac{2\sqrt{5}}{3} is \frac{16\sqrt{5}}{9}.
y=\frac{\frac{16\sqrt{5}}{9}±\frac{2\sqrt{5}}{3}}{\frac{50}{9}}
Multiply 2 times 1+1\left(-\frac{4}{3}\right)^{2}.
y=\frac{22\sqrt{5}}{\frac{50}{9}\times 9}
Now solve the equation y=\frac{\frac{16\sqrt{5}}{9}±\frac{2\sqrt{5}}{3}}{\frac{50}{9}} when ± is plus. Add \frac{16\sqrt{5}}{9} to \frac{2\sqrt{5}}{3}.
y=\frac{11\sqrt{5}}{25}
Divide \frac{22\sqrt{5}}{9} by \frac{50}{9} by multiplying \frac{22\sqrt{5}}{9} by the reciprocal of \frac{50}{9}.
y=\frac{10\sqrt{5}}{\frac{50}{9}\times 9}
Now solve the equation y=\frac{\frac{16\sqrt{5}}{9}±\frac{2\sqrt{5}}{3}}{\frac{50}{9}} when ± is minus. Subtract \frac{2\sqrt{5}}{3} from \frac{16\sqrt{5}}{9}.
y=\frac{\sqrt{5}}{5}
Divide \frac{10\sqrt{5}}{9} by \frac{50}{9} by multiplying \frac{10\sqrt{5}}{9} by the reciprocal of \frac{50}{9}.
x=-\frac{4}{3}\times \frac{11\sqrt{5}}{25}+\frac{2\sqrt{5}}{3}
There are two solutions for y: \frac{11\sqrt{5}}{25} and \frac{\sqrt{5}}{5}. Substitute \frac{11\sqrt{5}}{25} for y in the equation x=-\frac{4}{3}y+\frac{2\sqrt{5}}{3} to find the corresponding solution for x that satisfies both equations.
x=\frac{-4\times \frac{11\sqrt{5}}{25}+2\sqrt{5}}{3}
Multiply -\frac{4}{3} times \frac{11\sqrt{5}}{25}.
x=-\frac{4}{3}\times \frac{\sqrt{5}}{5}+\frac{2\sqrt{5}}{3}
Now substitute \frac{\sqrt{5}}{5} for y in the equation x=-\frac{4}{3}y+\frac{2\sqrt{5}}{3} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{-4\times \frac{\sqrt{5}}{5}+2\sqrt{5}}{3}
Multiply -\frac{4}{3} times \frac{\sqrt{5}}{5}.
x=\frac{-4\times \frac{11\sqrt{5}}{25}+2\sqrt{5}}{3},y=\frac{11\sqrt{5}}{25}\text{ or }x=\frac{-4\times \frac{\sqrt{5}}{5}+2\sqrt{5}}{3},y=\frac{\sqrt{5}}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}