\left\{ \begin{array} { l } { \frac { 3 } { 4 } x + \frac { 5 } { 2 } y = 8 } \\ { 0.25 y - 0.4 z = 0.1 } \\ { - \frac { x } { 2 } - \frac { z } { 2 } = - \frac { 5 } { 2 } } \end{array} \right.
Solve for x, y, z
x=4
y=2
z=1
Share
Copied to clipboard
3x+10y=32 0.25y-0.4z=0.1 -x-z=-5
Multiply each equation by the least common multiple of denominators in it. Simplify.
-x-z=-5 0.25y-0.4z=0.1 3x+10y=32
Reorder the equations.
x=-z+5
Solve -x-z=-5 for x.
3\left(-z+5\right)+10y=32
Substitute -z+5 for x in the equation 3x+10y=32.
y=1.6z+0.4 z=-\frac{17}{3}+\frac{10}{3}y
Solve the second equation for y and the third equation for z.
z=-\frac{17}{3}+\frac{10}{3}\left(1.6z+0.4\right)
Substitute 1.6z+0.4 for y in the equation z=-\frac{17}{3}+\frac{10}{3}y.
z=1
Solve z=-\frac{17}{3}+\frac{10}{3}\left(1.6z+0.4\right) for z.
y=1.6\times 1+0.4
Substitute 1 for z in the equation y=1.6z+0.4.
y=2
Calculate y from y=1.6\times 1+0.4.
x=-1+5
Substitute 1 for z in the equation x=-z+5.
x=4
Calculate x from x=-1+5.
x=4 y=2 z=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}