\left\{ \begin{array} { l } { \frac { 13.53 } { 13.33 } = \frac { x } { 4 } } \\ { x + y = 13.78 } \end{array} \right.
Solve for x, y
x = \frac{5412}{1333} = 4\frac{80}{1333} \approx 4.060015004
y = \frac{647837}{66650} = 9\frac{47987}{66650} \approx 9.719984996
Graph
Share
Copied to clipboard
4\times \frac{13.53}{13.33}=x
Consider the first equation. Multiply both sides of the equation by 4.
4\times \frac{1353}{1333}=x
Expand \frac{13.53}{13.33} by multiplying both numerator and the denominator by 100.
\frac{5412}{1333}=x
Multiply 4 and \frac{1353}{1333} to get \frac{5412}{1333}.
x=\frac{5412}{1333}
Swap sides so that all variable terms are on the left hand side.
\frac{5412}{1333}+y=13.78
Consider the second equation. Insert the known values of variables into the equation.
y=13.78-\frac{5412}{1333}
Subtract \frac{5412}{1333} from both sides.
y=\frac{647837}{66650}
Subtract \frac{5412}{1333} from 13.78 to get \frac{647837}{66650}.
x=\frac{5412}{1333} y=\frac{647837}{66650}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}