Skip to main content
Solve for V_1, V_2, V_0
Tick mark Image

Similar Problems from Web Search

Share

-420-52V_{1}+21V_{2}=0 30+V_{1}-2V_{2}-5V_{0}=0 V_{1}+V_{0}=10
Multiply each equation by the least common multiple of denominators in it. Simplify.
30+V_{1}-2V_{2}-5V_{0}=0 -420-52V_{1}+21V_{2}=0 V_{1}+V_{0}=10
Reorder the equations.
V_{1}=-30+2V_{2}+5V_{0}
Solve 30+V_{1}-2V_{2}-5V_{0}=0 for V_{1}.
-420-52\left(-30+2V_{2}+5V_{0}\right)+21V_{2}=0 -30+2V_{2}+5V_{0}+V_{0}=10
Substitute -30+2V_{2}+5V_{0} for V_{1} in the second and third equation.
V_{2}=\frac{1140}{83}-\frac{260}{83}V_{0} V_{0}=\frac{20}{3}-\frac{1}{3}V_{2}
Solve these equations for V_{2} and V_{0} respectively.
V_{0}=\frac{20}{3}-\frac{1}{3}\left(\frac{1140}{83}-\frac{260}{83}V_{0}\right)
Substitute \frac{1140}{83}-\frac{260}{83}V_{0} for V_{2} in the equation V_{0}=\frac{20}{3}-\frac{1}{3}V_{2}.
V_{0}=-\frac{520}{11}
Solve V_{0}=\frac{20}{3}-\frac{1}{3}\left(\frac{1140}{83}-\frac{260}{83}V_{0}\right) for V_{0}.
V_{2}=\frac{1140}{83}-\frac{260}{83}\left(-\frac{520}{11}\right)
Substitute -\frac{520}{11} for V_{0} in the equation V_{2}=\frac{1140}{83}-\frac{260}{83}V_{0}.
V_{2}=\frac{1780}{11}
Calculate V_{2} from V_{2}=\frac{1140}{83}-\frac{260}{83}\left(-\frac{520}{11}\right).
V_{1}=-30+2\times \frac{1780}{11}+5\left(-\frac{520}{11}\right)
Substitute \frac{1780}{11} for V_{2} and -\frac{520}{11} for V_{0} in the equation V_{1}=-30+2V_{2}+5V_{0}.
V_{1}=\frac{630}{11}
Calculate V_{1} from V_{1}=-30+2\times \frac{1780}{11}+5\left(-\frac{520}{11}\right).
V_{1}=\frac{630}{11} V_{2}=\frac{1780}{11} V_{0}=-\frac{520}{11}
The system is now solved.