Skip to main content
Solve for S, t
Tick mark Image

Similar Problems from Web Search

Share

6\left(1-2S\right)=5t
Consider the first equation. Multiply both sides of the equation by 30, the least common multiple of 5,6.
6-12S=5t
Use the distributive property to multiply 6 by 1-2S.
6-12S-5t=0
Subtract 5t from both sides.
-12S-5t=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
4-\left(t-S\right)=2S
Consider the second equation. Multiply both sides of the equation by 4, the least common multiple of 4,2.
4-t+S=2S
To find the opposite of t-S, find the opposite of each term.
4-t+S-2S=0
Subtract 2S from both sides.
4-t-S=0
Combine S and -2S to get -S.
-t-S=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
-12S-5t=-6,-S-t=-4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-12S-5t=-6
Choose one of the equations and solve it for S by isolating S on the left hand side of the equal sign.
-12S=5t-6
Add 5t to both sides of the equation.
S=-\frac{1}{12}\left(5t-6\right)
Divide both sides by -12.
S=-\frac{5}{12}t+\frac{1}{2}
Multiply -\frac{1}{12} times 5t-6.
-\left(-\frac{5}{12}t+\frac{1}{2}\right)-t=-4
Substitute -\frac{5t}{12}+\frac{1}{2} for S in the other equation, -S-t=-4.
\frac{5}{12}t-\frac{1}{2}-t=-4
Multiply -1 times -\frac{5t}{12}+\frac{1}{2}.
-\frac{7}{12}t-\frac{1}{2}=-4
Add \frac{5t}{12} to -t.
-\frac{7}{12}t=-\frac{7}{2}
Add \frac{1}{2} to both sides of the equation.
t=6
Divide both sides of the equation by -\frac{7}{12}, which is the same as multiplying both sides by the reciprocal of the fraction.
S=-\frac{5}{12}\times 6+\frac{1}{2}
Substitute 6 for t in S=-\frac{5}{12}t+\frac{1}{2}. Because the resulting equation contains only one variable, you can solve for S directly.
S=\frac{-5+1}{2}
Multiply -\frac{5}{12} times 6.
S=-2
Add \frac{1}{2} to -\frac{5}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
S=-2,t=6
The system is now solved.
6\left(1-2S\right)=5t
Consider the first equation. Multiply both sides of the equation by 30, the least common multiple of 5,6.
6-12S=5t
Use the distributive property to multiply 6 by 1-2S.
6-12S-5t=0
Subtract 5t from both sides.
-12S-5t=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
4-\left(t-S\right)=2S
Consider the second equation. Multiply both sides of the equation by 4, the least common multiple of 4,2.
4-t+S=2S
To find the opposite of t-S, find the opposite of each term.
4-t+S-2S=0
Subtract 2S from both sides.
4-t-S=0
Combine S and -2S to get -S.
-t-S=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
-12S-5t=-6,-S-t=-4
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-12&-5\\-1&-1\end{matrix}\right)\left(\begin{matrix}S\\t\end{matrix}\right)=\left(\begin{matrix}-6\\-4\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-12&-5\\-1&-1\end{matrix}\right))\left(\begin{matrix}-12&-5\\-1&-1\end{matrix}\right)\left(\begin{matrix}S\\t\end{matrix}\right)=inverse(\left(\begin{matrix}-12&-5\\-1&-1\end{matrix}\right))\left(\begin{matrix}-6\\-4\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-12&-5\\-1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}S\\t\end{matrix}\right)=inverse(\left(\begin{matrix}-12&-5\\-1&-1\end{matrix}\right))\left(\begin{matrix}-6\\-4\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}S\\t\end{matrix}\right)=inverse(\left(\begin{matrix}-12&-5\\-1&-1\end{matrix}\right))\left(\begin{matrix}-6\\-4\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}S\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-12\left(-1\right)-\left(-5\left(-1\right)\right)}&-\frac{-5}{-12\left(-1\right)-\left(-5\left(-1\right)\right)}\\-\frac{-1}{-12\left(-1\right)-\left(-5\left(-1\right)\right)}&-\frac{12}{-12\left(-1\right)-\left(-5\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-4\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}S\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{5}{7}\\\frac{1}{7}&-\frac{12}{7}\end{matrix}\right)\left(\begin{matrix}-6\\-4\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}S\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\left(-6\right)+\frac{5}{7}\left(-4\right)\\\frac{1}{7}\left(-6\right)-\frac{12}{7}\left(-4\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}S\\t\end{matrix}\right)=\left(\begin{matrix}-2\\6\end{matrix}\right)
Do the arithmetic.
S=-2,t=6
Extract the matrix elements S and t.
6\left(1-2S\right)=5t
Consider the first equation. Multiply both sides of the equation by 30, the least common multiple of 5,6.
6-12S=5t
Use the distributive property to multiply 6 by 1-2S.
6-12S-5t=0
Subtract 5t from both sides.
-12S-5t=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
4-\left(t-S\right)=2S
Consider the second equation. Multiply both sides of the equation by 4, the least common multiple of 4,2.
4-t+S=2S
To find the opposite of t-S, find the opposite of each term.
4-t+S-2S=0
Subtract 2S from both sides.
4-t-S=0
Combine S and -2S to get -S.
-t-S=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
-12S-5t=-6,-S-t=-4
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-\left(-12\right)S-\left(-5t\right)=-\left(-6\right),-12\left(-1\right)S-12\left(-1\right)t=-12\left(-4\right)
To make -12S and -S equal, multiply all terms on each side of the first equation by -1 and all terms on each side of the second by -12.
12S+5t=6,12S+12t=48
Simplify.
12S-12S+5t-12t=6-48
Subtract 12S+12t=48 from 12S+5t=6 by subtracting like terms on each side of the equal sign.
5t-12t=6-48
Add 12S to -12S. Terms 12S and -12S cancel out, leaving an equation with only one variable that can be solved.
-7t=6-48
Add 5t to -12t.
-7t=-42
Add 6 to -48.
t=6
Divide both sides by -7.
-S-6=-4
Substitute 6 for t in -S-t=-4. Because the resulting equation contains only one variable, you can solve for S directly.
-S=2
Add 6 to both sides of the equation.
S=-2
Divide both sides by -1.
S=-2,t=6
The system is now solved.