Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}x_{1}+x_{2}+2x_{3}=8 \frac{1}{3}x_{1}+\frac{1}{4}x_{2}+\frac{1}{5}x_{3}=8 \frac{1}{4}x_{1}+\frac{1}{5}x_{2}+\frac{1}{6}x_{3}=9
Reorder the equations.
x_{2}=8-\frac{1}{2}x_{1}-2x_{3}
Solve \frac{1}{2}x_{1}+x_{2}+2x_{3}=8 for x_{2}.
\frac{1}{3}x_{1}+\frac{1}{4}\left(8-\frac{1}{2}x_{1}-2x_{3}\right)+\frac{1}{5}x_{3}=8 \frac{1}{4}x_{1}+\frac{1}{5}\left(8-\frac{1}{2}x_{1}-2x_{3}\right)+\frac{1}{6}x_{3}=9
Substitute 8-\frac{1}{2}x_{1}-2x_{3} for x_{2} in the second and third equation.
x_{1}=\frac{144}{5}+\frac{36}{25}x_{3} x_{3}=-\frac{222}{7}+\frac{9}{14}x_{1}
Solve these equations for x_{1} and x_{3} respectively.
x_{3}=-\frac{222}{7}+\frac{9}{14}\left(\frac{144}{5}+\frac{36}{25}x_{3}\right)
Substitute \frac{144}{5}+\frac{36}{25}x_{3} for x_{1} in the equation x_{3}=-\frac{222}{7}+\frac{9}{14}x_{1}.
x_{3}=-\frac{2310}{13}
Solve x_{3}=-\frac{222}{7}+\frac{9}{14}\left(\frac{144}{5}+\frac{36}{25}x_{3}\right) for x_{3}.
x_{1}=\frac{144}{5}+\frac{36}{25}\left(-\frac{2310}{13}\right)
Substitute -\frac{2310}{13} for x_{3} in the equation x_{1}=\frac{144}{5}+\frac{36}{25}x_{3}.
x_{1}=-\frac{2952}{13}
Calculate x_{1} from x_{1}=\frac{144}{5}+\frac{36}{25}\left(-\frac{2310}{13}\right).
x_{2}=8-\frac{1}{2}\left(-\frac{2952}{13}\right)-2\left(-\frac{2310}{13}\right)
Substitute -\frac{2952}{13} for x_{1} and -\frac{2310}{13} for x_{3} in the equation x_{2}=8-\frac{1}{2}x_{1}-2x_{3}.
x_{2}=\frac{6200}{13}
Calculate x_{2} from x_{2}=8-\frac{1}{2}\left(-\frac{2952}{13}\right)-2\left(-\frac{2310}{13}\right).
x_{1}=-\frac{2952}{13} x_{2}=\frac{6200}{13} x_{3}=-\frac{2310}{13}
The system is now solved.