Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}x-\frac{1}{4}y=0
Consider the first equation. Subtract \frac{1}{4}y from both sides.
\frac{1}{3}x-\frac{1}{4}y=0,\frac{1}{4}x-\frac{1}{6}y=100
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{3}x-\frac{1}{4}y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{3}x=\frac{1}{4}y
Add \frac{y}{4} to both sides of the equation.
x=3\times \frac{1}{4}y
Multiply both sides by 3.
x=\frac{3}{4}y
Multiply 3 times \frac{y}{4}.
\frac{1}{4}\times \frac{3}{4}y-\frac{1}{6}y=100
Substitute \frac{3y}{4} for x in the other equation, \frac{1}{4}x-\frac{1}{6}y=100.
\frac{3}{16}y-\frac{1}{6}y=100
Multiply \frac{1}{4} times \frac{3y}{4}.
\frac{1}{48}y=100
Add \frac{3y}{16} to -\frac{y}{6}.
y=4800
Multiply both sides by 48.
x=\frac{3}{4}\times 4800
Substitute 4800 for y in x=\frac{3}{4}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=3600
Multiply \frac{3}{4} times 4800.
x=3600,y=4800
The system is now solved.
\frac{1}{3}x-\frac{1}{4}y=0
Consider the first equation. Subtract \frac{1}{4}y from both sides.
\frac{1}{3}x-\frac{1}{4}y=0,\frac{1}{4}x-\frac{1}{6}y=100
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{1}{3}&-\frac{1}{4}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\100\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{3}&-\frac{1}{4}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&-\frac{1}{4}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-\frac{1}{4}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\100\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{3}&-\frac{1}{4}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-\frac{1}{4}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\100\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-\frac{1}{4}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\100\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{6}}{\frac{1}{3}\left(-\frac{1}{6}\right)-\left(-\frac{1}{4}\times \frac{1}{4}\right)}&-\frac{-\frac{1}{4}}{\frac{1}{3}\left(-\frac{1}{6}\right)-\left(-\frac{1}{4}\times \frac{1}{4}\right)}\\-\frac{\frac{1}{4}}{\frac{1}{3}\left(-\frac{1}{6}\right)-\left(-\frac{1}{4}\times \frac{1}{4}\right)}&\frac{\frac{1}{3}}{\frac{1}{3}\left(-\frac{1}{6}\right)-\left(-\frac{1}{4}\times \frac{1}{4}\right)}\end{matrix}\right)\left(\begin{matrix}0\\100\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24&36\\-36&48\end{matrix}\right)\left(\begin{matrix}0\\100\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}36\times 100\\48\times 100\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3600\\4800\end{matrix}\right)
Do the arithmetic.
x=3600,y=4800
Extract the matrix elements x and y.
\frac{1}{3}x-\frac{1}{4}y=0
Consider the first equation. Subtract \frac{1}{4}y from both sides.
\frac{1}{3}x-\frac{1}{4}y=0,\frac{1}{4}x-\frac{1}{6}y=100
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{4}\times \frac{1}{3}x+\frac{1}{4}\left(-\frac{1}{4}\right)y=0,\frac{1}{3}\times \frac{1}{4}x+\frac{1}{3}\left(-\frac{1}{6}\right)y=\frac{1}{3}\times 100
To make \frac{x}{3} and \frac{x}{4} equal, multiply all terms on each side of the first equation by \frac{1}{4} and all terms on each side of the second by \frac{1}{3}.
\frac{1}{12}x-\frac{1}{16}y=0,\frac{1}{12}x-\frac{1}{18}y=\frac{100}{3}
Simplify.
\frac{1}{12}x-\frac{1}{12}x-\frac{1}{16}y+\frac{1}{18}y=-\frac{100}{3}
Subtract \frac{1}{12}x-\frac{1}{18}y=\frac{100}{3} from \frac{1}{12}x-\frac{1}{16}y=0 by subtracting like terms on each side of the equal sign.
-\frac{1}{16}y+\frac{1}{18}y=-\frac{100}{3}
Add \frac{x}{12} to -\frac{x}{12}. Terms \frac{x}{12} and -\frac{x}{12} cancel out, leaving an equation with only one variable that can be solved.
-\frac{1}{144}y=-\frac{100}{3}
Add -\frac{y}{16} to \frac{y}{18}.
y=4800
Multiply both sides by -144.
\frac{1}{4}x-\frac{1}{6}\times 4800=100
Substitute 4800 for y in \frac{1}{4}x-\frac{1}{6}y=100. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{1}{4}x-800=100
Multiply -\frac{1}{6} times 4800.
\frac{1}{4}x=900
Add 800 to both sides of the equation.
x=3600
Multiply both sides by 4.
x=3600,y=4800
The system is now solved.