\left\{ \begin{array} { l } { \frac { 1 } { 3 } x = \frac { 1 } { 2 } ( y - \frac { 1 } { 3 } ) } \\ { \frac { 1 } { 2 } ( x - y ) = \frac { 2 } { 3 } - \frac { 3 } { 2 } x } \end{array} \right.
Solve for x, y
x=\frac{1}{2}=0.5
y=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
\frac{1}{3}x=\frac{1}{2}y-\frac{1}{6}
Consider the first equation. Use the distributive property to multiply \frac{1}{2} by y-\frac{1}{3}.
x=3\left(\frac{1}{2}y-\frac{1}{6}\right)
Multiply both sides by 3.
x=\frac{3}{2}y-\frac{1}{2}
Multiply 3 times \frac{y}{2}-\frac{1}{6}.
2\left(\frac{3}{2}y-\frac{1}{2}\right)-\frac{1}{2}y=\frac{2}{3}
Substitute \frac{3y-1}{2} for x in the other equation, 2x-\frac{1}{2}y=\frac{2}{3}.
3y-1-\frac{1}{2}y=\frac{2}{3}
Multiply 2 times \frac{3y-1}{2}.
\frac{5}{2}y-1=\frac{2}{3}
Add 3y to -\frac{y}{2}.
\frac{5}{2}y=\frac{5}{3}
Add 1 to both sides of the equation.
y=\frac{2}{3}
Divide both sides of the equation by \frac{5}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{3}{2}\times \frac{2}{3}-\frac{1}{2}
Substitute \frac{2}{3} for y in x=\frac{3}{2}y-\frac{1}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=1-\frac{1}{2}
Multiply \frac{3}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{2}
Add -\frac{1}{2} to 1.
x=\frac{1}{2},y=\frac{2}{3}
The system is now solved.
\frac{1}{3}x=\frac{1}{2}y-\frac{1}{6}
Consider the first equation. Use the distributive property to multiply \frac{1}{2} by y-\frac{1}{3}.
\frac{1}{3}x-\frac{1}{2}y=-\frac{1}{6}
Subtract \frac{1}{2}y from both sides.
\frac{1}{2}x-\frac{1}{2}y=\frac{2}{3}-\frac{3}{2}x
Consider the second equation. Use the distributive property to multiply \frac{1}{2} by x-y.
\frac{1}{2}x-\frac{1}{2}y+\frac{3}{2}x=\frac{2}{3}
Add \frac{3}{2}x to both sides.
2x-\frac{1}{2}y=\frac{2}{3}
Combine \frac{1}{2}x and \frac{3}{2}x to get 2x.
\frac{1}{3}x-\frac{1}{2}y=-\frac{1}{6},2x-\frac{1}{2}y=\frac{2}{3}
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{1}{3}&-\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\\\frac{2}{3}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{3}&-\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&-\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}-\frac{1}{6}\\\frac{2}{3}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{3}&-\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}-\frac{1}{6}\\\frac{2}{3}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&-\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}-\frac{1}{6}\\\frac{2}{3}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{2}}{\frac{1}{3}\left(-\frac{1}{2}\right)-\left(-\frac{1}{2}\times 2\right)}&-\frac{-\frac{1}{2}}{\frac{1}{3}\left(-\frac{1}{2}\right)-\left(-\frac{1}{2}\times 2\right)}\\-\frac{2}{\frac{1}{3}\left(-\frac{1}{2}\right)-\left(-\frac{1}{2}\times 2\right)}&\frac{\frac{1}{3}}{\frac{1}{3}\left(-\frac{1}{2}\right)-\left(-\frac{1}{2}\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-\frac{1}{6}\\\frac{2}{3}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{3}{5}\\-\frac{12}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-\frac{1}{6}\\\frac{2}{3}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\left(-\frac{1}{6}\right)+\frac{3}{5}\times \frac{2}{3}\\-\frac{12}{5}\left(-\frac{1}{6}\right)+\frac{2}{5}\times \frac{2}{3}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\\frac{2}{3}\end{matrix}\right)
Do the arithmetic.
x=\frac{1}{2},y=\frac{2}{3}
Extract the matrix elements x and y.
\frac{1}{3}x=\frac{1}{2}y-\frac{1}{6}
Consider the first equation. Use the distributive property to multiply \frac{1}{2} by y-\frac{1}{3}.
\frac{1}{3}x-\frac{1}{2}y=-\frac{1}{6}
Subtract \frac{1}{2}y from both sides.
\frac{1}{2}x-\frac{1}{2}y=\frac{2}{3}-\frac{3}{2}x
Consider the second equation. Use the distributive property to multiply \frac{1}{2} by x-y.
\frac{1}{2}x-\frac{1}{2}y+\frac{3}{2}x=\frac{2}{3}
Add \frac{3}{2}x to both sides.
2x-\frac{1}{2}y=\frac{2}{3}
Combine \frac{1}{2}x and \frac{3}{2}x to get 2x.
\frac{1}{3}x-\frac{1}{2}y=-\frac{1}{6},2x-\frac{1}{2}y=\frac{2}{3}
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{3}x-2x-\frac{1}{2}y+\frac{1}{2}y=-\frac{1}{6}-\frac{2}{3}
Subtract 2x-\frac{1}{2}y=\frac{2}{3} from \frac{1}{3}x-\frac{1}{2}y=-\frac{1}{6} by subtracting like terms on each side of the equal sign.
\frac{1}{3}x-2x=-\frac{1}{6}-\frac{2}{3}
Add -\frac{y}{2} to \frac{y}{2}. Terms -\frac{y}{2} and \frac{y}{2} cancel out, leaving an equation with only one variable that can be solved.
-\frac{5}{3}x=-\frac{1}{6}-\frac{2}{3}
Add \frac{x}{3} to -2x.
-\frac{5}{3}x=-\frac{5}{6}
Add -\frac{1}{6} to -\frac{2}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{2}
Divide both sides of the equation by -\frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
2\times \frac{1}{2}-\frac{1}{2}y=\frac{2}{3}
Substitute \frac{1}{2} for x in 2x-\frac{1}{2}y=\frac{2}{3}. Because the resulting equation contains only one variable, you can solve for y directly.
1-\frac{1}{2}y=\frac{2}{3}
Multiply 2 times \frac{1}{2}.
-\frac{1}{2}y=-\frac{1}{3}
Subtract 1 from both sides of the equation.
y=\frac{2}{3}
Multiply both sides by -2.
x=\frac{1}{2},y=\frac{2}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}