\left\{ \begin{array} { l } { \frac { 1 } { 2 x - 1 } - 2 x = y } \\ { x = \frac { 1 } { 3 } \frac { 1 } { 3 } } \end{array} \right.
Solve for x, y
x=\frac{1}{9}\approx 0.111111111
y = -\frac{95}{63} = -1\frac{32}{63} \approx -1.507936508
Graph
Share
Copied to clipboard
x=\frac{1}{9}
Consider the second equation. Multiply \frac{1}{3} and \frac{1}{3} to get \frac{1}{9}.
\frac{1}{2\times \frac{1}{9}-1}-2\times \frac{1}{9}=y
Consider the first equation. Insert the known values of variables into the equation.
\frac{1}{\frac{2}{9}-1}-2\times \frac{1}{9}=y
Multiply 2 and \frac{1}{9} to get \frac{2}{9}.
\frac{1}{-\frac{7}{9}}-2\times \frac{1}{9}=y
Subtract 1 from \frac{2}{9} to get -\frac{7}{9}.
1\left(-\frac{9}{7}\right)-2\times \frac{1}{9}=y
Divide 1 by -\frac{7}{9} by multiplying 1 by the reciprocal of -\frac{7}{9}.
-\frac{9}{7}-2\times \frac{1}{9}=y
Multiply 1 and -\frac{9}{7} to get -\frac{9}{7}.
-\frac{9}{7}-\frac{2}{9}=y
Multiply -2 and \frac{1}{9} to get -\frac{2}{9}.
-\frac{95}{63}=y
Subtract \frac{2}{9} from -\frac{9}{7} to get -\frac{95}{63}.
y=-\frac{95}{63}
Swap sides so that all variable terms are on the left hand side.
x=\frac{1}{9} y=-\frac{95}{63}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}