\left\{ \begin{array} { l } { \frac { ( x + y ) [ 1 - ( x - y ) ] + x ^ { 2 } } { 6 } + \frac { 2 } { 3 } - \frac { y ^ { 2 } } { 6 } = 2 - \frac { 3 } { 2 } + \frac { x + y } { 4 } } \\ { \frac { y + 4 } { 3 } = \frac { x - 6 } { 2 } } \end{array} \right.
Solve for x, y
x=6
y=-4
Graph
Share
Copied to clipboard
2\left(\left(x+y\right)\left(1-\left(x-y\right)\right)+x^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 6,3,2,4.
2\left(\left(x+y\right)\left(1-x+y\right)+x^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
To find the opposite of x-y, find the opposite of each term.
2\left(x-x^{2}+y+y^{2}+x^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
Use the distributive property to multiply x+y by 1-x+y and combine like terms.
2\left(x+y+y^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
Combine -x^{2} and x^{2} to get 0.
2x+2y+2y^{2}+8-2y^{2}=24-18+3\left(x+y\right)
Use the distributive property to multiply 2 by x+y+y^{2}.
2x+2y+8=24-18+3\left(x+y\right)
Combine 2y^{2} and -2y^{2} to get 0.
2x+2y+8=6+3\left(x+y\right)
Subtract 18 from 24 to get 6.
2x+2y+8=6+3x+3y
Use the distributive property to multiply 3 by x+y.
2x+2y+8-3x=6+3y
Subtract 3x from both sides.
-x+2y+8=6+3y
Combine 2x and -3x to get -x.
-x+2y+8-3y=6
Subtract 3y from both sides.
-x-y+8=6
Combine 2y and -3y to get -y.
-x-y=6-8
Subtract 8 from both sides.
-x-y=-2
Subtract 8 from 6 to get -2.
2\left(y+4\right)=3\left(x-6\right)
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 3,2.
2y+8=3\left(x-6\right)
Use the distributive property to multiply 2 by y+4.
2y+8=3x-18
Use the distributive property to multiply 3 by x-6.
2y+8-3x=-18
Subtract 3x from both sides.
2y-3x=-18-8
Subtract 8 from both sides.
2y-3x=-26
Subtract 8 from -18 to get -26.
-x-y=-2,-3x+2y=-26
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-x-y=-2
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-x=y-2
Add y to both sides of the equation.
x=-\left(y-2\right)
Divide both sides by -1.
x=-y+2
Multiply -1 times y-2.
-3\left(-y+2\right)+2y=-26
Substitute -y+2 for x in the other equation, -3x+2y=-26.
3y-6+2y=-26
Multiply -3 times -y+2.
5y-6=-26
Add 3y to 2y.
5y=-20
Add 6 to both sides of the equation.
y=-4
Divide both sides by 5.
x=-\left(-4\right)+2
Substitute -4 for y in x=-y+2. Because the resulting equation contains only one variable, you can solve for x directly.
x=4+2
Multiply -1 times -4.
x=6
Add 2 to 4.
x=6,y=-4
The system is now solved.
2\left(\left(x+y\right)\left(1-\left(x-y\right)\right)+x^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 6,3,2,4.
2\left(\left(x+y\right)\left(1-x+y\right)+x^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
To find the opposite of x-y, find the opposite of each term.
2\left(x-x^{2}+y+y^{2}+x^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
Use the distributive property to multiply x+y by 1-x+y and combine like terms.
2\left(x+y+y^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
Combine -x^{2} and x^{2} to get 0.
2x+2y+2y^{2}+8-2y^{2}=24-18+3\left(x+y\right)
Use the distributive property to multiply 2 by x+y+y^{2}.
2x+2y+8=24-18+3\left(x+y\right)
Combine 2y^{2} and -2y^{2} to get 0.
2x+2y+8=6+3\left(x+y\right)
Subtract 18 from 24 to get 6.
2x+2y+8=6+3x+3y
Use the distributive property to multiply 3 by x+y.
2x+2y+8-3x=6+3y
Subtract 3x from both sides.
-x+2y+8=6+3y
Combine 2x and -3x to get -x.
-x+2y+8-3y=6
Subtract 3y from both sides.
-x-y+8=6
Combine 2y and -3y to get -y.
-x-y=6-8
Subtract 8 from both sides.
-x-y=-2
Subtract 8 from 6 to get -2.
2\left(y+4\right)=3\left(x-6\right)
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 3,2.
2y+8=3\left(x-6\right)
Use the distributive property to multiply 2 by y+4.
2y+8=3x-18
Use the distributive property to multiply 3 by x-6.
2y+8-3x=-18
Subtract 3x from both sides.
2y-3x=-18-8
Subtract 8 from both sides.
2y-3x=-26
Subtract 8 from -18 to get -26.
-x-y=-2,-3x+2y=-26
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-1&-1\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-26\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}-1&-1\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}-2\\-26\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-1&-1\\-3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}-2\\-26\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}-2\\-26\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-\left(-\left(-3\right)\right)}&-\frac{-1}{-2-\left(-\left(-3\right)\right)}\\-\frac{-3}{-2-\left(-\left(-3\right)\right)}&-\frac{1}{-2-\left(-\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-26\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&-\frac{1}{5}\\-\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-2\\-26\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-2\right)-\frac{1}{5}\left(-26\right)\\-\frac{3}{5}\left(-2\right)+\frac{1}{5}\left(-26\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
Do the arithmetic.
x=6,y=-4
Extract the matrix elements x and y.
2\left(\left(x+y\right)\left(1-\left(x-y\right)\right)+x^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 6,3,2,4.
2\left(\left(x+y\right)\left(1-x+y\right)+x^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
To find the opposite of x-y, find the opposite of each term.
2\left(x-x^{2}+y+y^{2}+x^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
Use the distributive property to multiply x+y by 1-x+y and combine like terms.
2\left(x+y+y^{2}\right)+8-2y^{2}=24-18+3\left(x+y\right)
Combine -x^{2} and x^{2} to get 0.
2x+2y+2y^{2}+8-2y^{2}=24-18+3\left(x+y\right)
Use the distributive property to multiply 2 by x+y+y^{2}.
2x+2y+8=24-18+3\left(x+y\right)
Combine 2y^{2} and -2y^{2} to get 0.
2x+2y+8=6+3\left(x+y\right)
Subtract 18 from 24 to get 6.
2x+2y+8=6+3x+3y
Use the distributive property to multiply 3 by x+y.
2x+2y+8-3x=6+3y
Subtract 3x from both sides.
-x+2y+8=6+3y
Combine 2x and -3x to get -x.
-x+2y+8-3y=6
Subtract 3y from both sides.
-x-y+8=6
Combine 2y and -3y to get -y.
-x-y=6-8
Subtract 8 from both sides.
-x-y=-2
Subtract 8 from 6 to get -2.
2\left(y+4\right)=3\left(x-6\right)
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 3,2.
2y+8=3\left(x-6\right)
Use the distributive property to multiply 2 by y+4.
2y+8=3x-18
Use the distributive property to multiply 3 by x-6.
2y+8-3x=-18
Subtract 3x from both sides.
2y-3x=-18-8
Subtract 8 from both sides.
2y-3x=-26
Subtract 8 from -18 to get -26.
-x-y=-2,-3x+2y=-26
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-3\left(-1\right)x-3\left(-1\right)y=-3\left(-2\right),-\left(-3\right)x-2y=-\left(-26\right)
To make -x and -3x equal, multiply all terms on each side of the first equation by -3 and all terms on each side of the second by -1.
3x+3y=6,3x-2y=26
Simplify.
3x-3x+3y+2y=6-26
Subtract 3x-2y=26 from 3x+3y=6 by subtracting like terms on each side of the equal sign.
3y+2y=6-26
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
5y=6-26
Add 3y to 2y.
5y=-20
Add 6 to -26.
y=-4
Divide both sides by 5.
-3x+2\left(-4\right)=-26
Substitute -4 for y in -3x+2y=-26. Because the resulting equation contains only one variable, you can solve for x directly.
-3x-8=-26
Multiply 2 times -4.
-3x=-18
Add 8 to both sides of the equation.
x=6
Divide both sides by -3.
x=6,y=-4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}