Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=2x_{2}-x_{3}+1
Solve x_{1}-2x_{2}+x_{3}=1 for x_{1}.
2x_{2}-x_{3}+1+x_{2}+x_{3}=5 -\left(2x_{2}-x_{3}+1\right)+x_{2}+x_{3}=2
Substitute 2x_{2}-x_{3}+1 for x_{1} in the second and third equation.
x_{2}=\frac{4}{3} x_{3}=\frac{3}{2}+\frac{1}{2}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{3}{2}+\frac{1}{2}\times \frac{4}{3}
Substitute \frac{4}{3} for x_{2} in the equation x_{3}=\frac{3}{2}+\frac{1}{2}x_{2}.
x_{3}=\frac{13}{6}
Calculate x_{3} from x_{3}=\frac{3}{2}+\frac{1}{2}\times \frac{4}{3}.
x_{1}=2\times \frac{4}{3}-\frac{13}{6}+1
Substitute \frac{4}{3} for x_{2} and \frac{13}{6} for x_{3} in the equation x_{1}=2x_{2}-x_{3}+1.
x_{1}=\frac{3}{2}
Calculate x_{1} from x_{1}=2\times \frac{4}{3}-\frac{13}{6}+1.
x_{1}=\frac{3}{2} x_{2}=\frac{4}{3} x_{3}=\frac{13}{6}
The system is now solved.