Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2y=3,5x-3\left(y+2\right)=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=3
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=2y+3
Add 2y to both sides of the equation.
5\left(2y+3\right)-3\left(y+2\right)=2
Substitute 2y+3 for x in the other equation, 5x-3\left(y+2\right)=2.
10y+15-3\left(y+2\right)=2
Multiply 5 times 2y+3.
10y+15-3y-6=2
Multiply -3 times y+2.
7y+15-6=2
Add 10y to -3y.
7y+9=2
Add 15 to -6.
7y=-7
Subtract 9 from both sides of the equation.
y=-1
Divide both sides by 7.
x=2\left(-1\right)+3
Substitute -1 for y in x=2y+3. Because the resulting equation contains only one variable, you can solve for x directly.
x=-2+3
Multiply 2 times -1.
x=1
Add 3 to -2.
x=1,y=-1
The system is now solved.
x-2y=3,5x-3\left(y+2\right)=2
Put the equations in standard form and then use matrices to solve the system of equations.
5x-3\left(y+2\right)=2
Simplify the second equation to put it in standard form.
5x-3y-6=2
Multiply -3 times y+2.
5x-3y=8
Add 6 to both sides of the equation.
\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\8\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right))\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-2\\5&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-2\times 5\right)}&-\frac{-2}{-3-\left(-2\times 5\right)}\\-\frac{5}{-3-\left(-2\times 5\right)}&\frac{1}{-3-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}&\frac{2}{7}\\-\frac{5}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}\times 3+\frac{2}{7}\times 8\\-\frac{5}{7}\times 3+\frac{1}{7}\times 8\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Do the arithmetic.
x=1,y=-1
Extract the matrix elements x and y.