\left\{ \begin{array} { c } { x \cdot y = z } \\ { ( x + 5 ) \cdot ( y - 200 ) = z } \\ { ( x - 4 ) ( y - 232 ) = z } \end{array} \right.
Solve for x, y, z
x=\frac{16}{49}\approx 0.326530612
y = \frac{10440}{49} = 213\frac{3}{49} \approx 213.06122449
z = \frac{167040}{2401} = 69\frac{1371}{2401} \approx 69.571012078
Share
Copied to clipboard
z=xy
Solve xy=z for z.
\left(x+5\right)\left(y-200\right)=xy \left(x-4\right)\left(y-232\right)=xy
Substitute xy for z in the second and third equation.
y=200+40x x=4-\frac{1}{58}y
Solve these equations for y and x respectively.
x=4-\frac{1}{58}\left(200+40x\right)
Substitute 200+40x for y in the equation x=4-\frac{1}{58}y.
x=\frac{16}{49}
Solve x=4-\frac{1}{58}\left(200+40x\right) for x.
y=200+40\times \frac{16}{49}
Substitute \frac{16}{49} for x in the equation y=200+40x.
y=\frac{10440}{49}
Calculate y from y=200+40\times \frac{16}{49}.
z=\frac{16}{49}\times \frac{10440}{49}
Substitute \frac{10440}{49} for y and \frac{16}{49} for x in the equation z=xy.
z=\frac{167040}{2401}
Calculate z from z=\frac{16}{49}\times \frac{10440}{49}.
x=\frac{16}{49} y=\frac{10440}{49} z=\frac{167040}{2401}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}