Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=7,y^{2}+x^{2}=29
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=7
Solve x+y=7 for x by isolating x on the left hand side of the equal sign.
x=-y+7
Subtract y from both sides of the equation.
y^{2}+\left(-y+7\right)^{2}=29
Substitute -y+7 for x in the other equation, y^{2}+x^{2}=29.
y^{2}+y^{2}-14y+49=29
Square -y+7.
2y^{2}-14y+49=29
Add y^{2} to y^{2}.
2y^{2}-14y+20=0
Subtract 29 from both sides of the equation.
y=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\times 20}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 7\left(-1\right)\times 2 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-14\right)±\sqrt{196-4\times 2\times 20}}{2\times 2}
Square 1\times 7\left(-1\right)\times 2.
y=\frac{-\left(-14\right)±\sqrt{196-8\times 20}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-14\right)±\sqrt{196-160}}{2\times 2}
Multiply -8 times 20.
y=\frac{-\left(-14\right)±\sqrt{36}}{2\times 2}
Add 196 to -160.
y=\frac{-\left(-14\right)±6}{2\times 2}
Take the square root of 36.
y=\frac{14±6}{2\times 2}
The opposite of 1\times 7\left(-1\right)\times 2 is 14.
y=\frac{14±6}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{20}{4}
Now solve the equation y=\frac{14±6}{4} when ± is plus. Add 14 to 6.
y=5
Divide 20 by 4.
y=\frac{8}{4}
Now solve the equation y=\frac{14±6}{4} when ± is minus. Subtract 6 from 14.
y=2
Divide 8 by 4.
x=-5+7
There are two solutions for y: 5 and 2. Substitute 5 for y in the equation x=-y+7 to find the corresponding solution for x that satisfies both equations.
x=2
Add -5 to 7.
x=-2+7
Now substitute 2 for y in the equation x=-y+7 and solve to find the corresponding solution for x that satisfies both equations.
x=5
Add -2 to 7.
x=2,y=5\text{ or }x=5,y=2
The system is now solved.