\left\{ \begin{array} { c } { x + y = 40 } \\ { 4 x + 2 y = 102 } \end{array} \right.
Solve for x, y
x=11
y=29
Graph
Share
Copied to clipboard
x+y=40,4x+2y=102
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=40
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+40
Subtract y from both sides of the equation.
4\left(-y+40\right)+2y=102
Substitute -y+40 for x in the other equation, 4x+2y=102.
-4y+160+2y=102
Multiply 4 times -y+40.
-2y+160=102
Add -4y to 2y.
-2y=-58
Subtract 160 from both sides of the equation.
y=29
Divide both sides by -2.
x=-29+40
Substitute 29 for y in x=-y+40. Because the resulting equation contains only one variable, you can solve for x directly.
x=11
Add 40 to -29.
x=11,y=29
The system is now solved.
x+y=40,4x+2y=102
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\102\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}40\\102\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}40\\102\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}40\\102\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}40\\102\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}40\\102\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-40+\frac{1}{2}\times 102\\2\times 40-\frac{1}{2}\times 102\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\29\end{matrix}\right)
Do the arithmetic.
x=11,y=29
Extract the matrix elements x and y.
x+y=40,4x+2y=102
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+4y=4\times 40,4x+2y=102
To make x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 1.
4x+4y=160,4x+2y=102
Simplify.
4x-4x+4y-2y=160-102
Subtract 4x+2y=102 from 4x+4y=160 by subtracting like terms on each side of the equal sign.
4y-2y=160-102
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
2y=160-102
Add 4y to -2y.
2y=58
Add 160 to -102.
y=29
Divide both sides by 2.
4x+2\times 29=102
Substitute 29 for y in 4x+2y=102. Because the resulting equation contains only one variable, you can solve for x directly.
4x+58=102
Multiply 2 times 29.
4x=44
Subtract 58 from both sides of the equation.
x=11
Divide both sides by 4.
x=11,y=29
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}