\left\{ \begin{array} { c } { x + y + z = 6 } \\ { - 2 x + y + z = - 3 } \\ { 2 x + y - 2 z = 6 } \end{array} \right.
Solve for x, y, z
x=3
y=2
z=1
Share
Copied to clipboard
x=-y-z+6
Solve x+y+z=6 for x.
-2\left(-y-z+6\right)+y+z=-3 2\left(-y-z+6\right)+y-2z=6
Substitute -y-z+6 for x in the second and third equation.
y=3-z z=-\frac{1}{4}y+\frac{3}{2}
Solve these equations for y and z respectively.
z=-\frac{1}{4}\left(3-z\right)+\frac{3}{2}
Substitute 3-z for y in the equation z=-\frac{1}{4}y+\frac{3}{2}.
z=1
Solve z=-\frac{1}{4}\left(3-z\right)+\frac{3}{2} for z.
y=3-1
Substitute 1 for z in the equation y=3-z.
y=2
Calculate y from y=3-1.
x=-2-1+6
Substitute 2 for y and 1 for z in the equation x=-y-z+6.
x=3
Calculate x from x=-2-1+6.
x=3 y=2 z=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}