\left\{ \begin{array} { c } { a - b = 140 } \\ { \frac { 5 } { 100 } a - \frac { 4 } { 100 } b = 42 } \end{array} \right.
Solve for a, b
a=3640
b=3500
Share
Copied to clipboard
a-b=140,\frac{1}{20}a-\frac{1}{25}b=42
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a-b=140
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
a=b+140
Add b to both sides of the equation.
\frac{1}{20}\left(b+140\right)-\frac{1}{25}b=42
Substitute b+140 for a in the other equation, \frac{1}{20}a-\frac{1}{25}b=42.
\frac{1}{20}b+7-\frac{1}{25}b=42
Multiply \frac{1}{20} times b+140.
\frac{1}{100}b+7=42
Add \frac{b}{20} to -\frac{b}{25}.
\frac{1}{100}b=35
Subtract 7 from both sides of the equation.
b=3500
Multiply both sides by 100.
a=3500+140
Substitute 3500 for b in a=b+140. Because the resulting equation contains only one variable, you can solve for a directly.
a=3640
Add 140 to 3500.
a=3640,b=3500
The system is now solved.
a-b=140,\frac{1}{20}a-\frac{1}{25}b=42
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\\frac{1}{20}&-\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}140\\42\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\\frac{1}{20}&-\frac{1}{25}\end{matrix}\right))\left(\begin{matrix}1&-1\\\frac{1}{20}&-\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{1}{20}&-\frac{1}{25}\end{matrix}\right))\left(\begin{matrix}140\\42\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\\frac{1}{20}&-\frac{1}{25}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{1}{20}&-\frac{1}{25}\end{matrix}\right))\left(\begin{matrix}140\\42\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{1}{20}&-\frac{1}{25}\end{matrix}\right))\left(\begin{matrix}140\\42\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{25}}{-\frac{1}{25}-\left(-\frac{1}{20}\right)}&-\frac{-1}{-\frac{1}{25}-\left(-\frac{1}{20}\right)}\\-\frac{\frac{1}{20}}{-\frac{1}{25}-\left(-\frac{1}{20}\right)}&\frac{1}{-\frac{1}{25}-\left(-\frac{1}{20}\right)}\end{matrix}\right)\left(\begin{matrix}140\\42\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-4&100\\-5&100\end{matrix}\right)\left(\begin{matrix}140\\42\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-4\times 140+100\times 42\\-5\times 140+100\times 42\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3640\\3500\end{matrix}\right)
Do the arithmetic.
a=3640,b=3500
Extract the matrix elements a and b.
a-b=140,\frac{1}{20}a-\frac{1}{25}b=42
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{20}a+\frac{1}{20}\left(-1\right)b=\frac{1}{20}\times 140,\frac{1}{20}a-\frac{1}{25}b=42
To make a and \frac{a}{20} equal, multiply all terms on each side of the first equation by \frac{1}{20} and all terms on each side of the second by 1.
\frac{1}{20}a-\frac{1}{20}b=7,\frac{1}{20}a-\frac{1}{25}b=42
Simplify.
\frac{1}{20}a-\frac{1}{20}a-\frac{1}{20}b+\frac{1}{25}b=7-42
Subtract \frac{1}{20}a-\frac{1}{25}b=42 from \frac{1}{20}a-\frac{1}{20}b=7 by subtracting like terms on each side of the equal sign.
-\frac{1}{20}b+\frac{1}{25}b=7-42
Add \frac{a}{20} to -\frac{a}{20}. Terms \frac{a}{20} and -\frac{a}{20} cancel out, leaving an equation with only one variable that can be solved.
-\frac{1}{100}b=7-42
Add -\frac{b}{20} to \frac{b}{25}.
-\frac{1}{100}b=-35
Add 7 to -42.
b=3500
Multiply both sides by -100.
\frac{1}{20}a-\frac{1}{25}\times 3500=42
Substitute 3500 for b in \frac{1}{20}a-\frac{1}{25}b=42. Because the resulting equation contains only one variable, you can solve for a directly.
\frac{1}{20}a-140=42
Multiply -\frac{1}{25} times 3500.
\frac{1}{20}a=182
Add 140 to both sides of the equation.
a=3640
Multiply both sides by 20.
a=3640,b=3500
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}