\left\{ \begin{array} { c } { 5 x + y + 4 z = 14 } \\ { - 3 x + 2 y - 5 z = 2 } \\ { x - y + 3 z = - 6 } \end{array} \right.
Solve for x, y, z
x=6
y=0
z=-4
Share
Copied to clipboard
y=-5x-4z+14
Solve 5x+y+4z=14 for y.
-3x+2\left(-5x-4z+14\right)-5z=2 x-\left(-5x-4z+14\right)+3z=-6
Substitute -5x-4z+14 for y in the second and third equation.
x=2-z z=\frac{8}{7}-\frac{6}{7}x
Solve these equations for x and z respectively.
z=\frac{8}{7}-\frac{6}{7}\left(2-z\right)
Substitute 2-z for x in the equation z=\frac{8}{7}-\frac{6}{7}x.
z=-4
Solve z=\frac{8}{7}-\frac{6}{7}\left(2-z\right) for z.
x=2-\left(-4\right)
Substitute -4 for z in the equation x=2-z.
x=6
Calculate x from x=2-\left(-4\right).
y=-5\times 6-4\left(-4\right)+14
Substitute 6 for x and -4 for z in the equation y=-5x-4z+14.
y=0
Calculate y from y=-5\times 6-4\left(-4\right)+14.
x=6 y=0 z=-4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}