\left\{ \begin{array} { c } { 3 x _ { 1 } - x _ { 2 } = 1 } \\ { - x _ { 1 } + x _ { 2 } - x _ { 3 } = 3 } \\ { - x _ { 2 } + x _ { 3 } = 4 } \end{array} \right.
Solve for x_1, x_2, x_3
x_{1}=-7
x_{2}=-22
x_{3}=-18
Share
Copied to clipboard
x_{2}=3x_{1}-1
Solve 3x_{1}-x_{2}=1 for x_{2}.
-x_{1}+3x_{1}-1-x_{3}=3 -\left(3x_{1}-1\right)+x_{3}=4
Substitute 3x_{1}-1 for x_{2} in the second and third equation.
x_{1}=2+\frac{1}{2}x_{3} x_{3}=3+3x_{1}
Solve these equations for x_{1} and x_{3} respectively.
x_{3}=3+3\left(2+\frac{1}{2}x_{3}\right)
Substitute 2+\frac{1}{2}x_{3} for x_{1} in the equation x_{3}=3+3x_{1}.
x_{3}=-18
Solve x_{3}=3+3\left(2+\frac{1}{2}x_{3}\right) for x_{3}.
x_{1}=2+\frac{1}{2}\left(-18\right)
Substitute -18 for x_{3} in the equation x_{1}=2+\frac{1}{2}x_{3}.
x_{1}=-7
Calculate x_{1} from x_{1}=2+\frac{1}{2}\left(-18\right).
x_{2}=3\left(-7\right)-1
Substitute -7 for x_{1} in the equation x_{2}=3x_{1}-1.
x_{2}=-22
Calculate x_{2} from x_{2}=3\left(-7\right)-1.
x_{1}=-7 x_{2}=-22 x_{3}=-18
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}