\left\{ \begin{array} { c } { 201 x - 99 y = 102 } \\ { 101 x - 199 y = - 98 } \end{array} \right.
Solve for x, y
x=1
y=1
Graph
Share
Copied to clipboard
201x-99y=102,101x-199y=-98
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
201x-99y=102
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
201x=99y+102
Add 99y to both sides of the equation.
x=\frac{1}{201}\left(99y+102\right)
Divide both sides by 201.
x=\frac{33}{67}y+\frac{34}{67}
Multiply \frac{1}{201} times 99y+102.
101\left(\frac{33}{67}y+\frac{34}{67}\right)-199y=-98
Substitute \frac{33y+34}{67} for x in the other equation, 101x-199y=-98.
\frac{3333}{67}y+\frac{3434}{67}-199y=-98
Multiply 101 times \frac{33y+34}{67}.
-\frac{10000}{67}y+\frac{3434}{67}=-98
Add \frac{3333y}{67} to -199y.
-\frac{10000}{67}y=-\frac{10000}{67}
Subtract \frac{3434}{67} from both sides of the equation.
y=1
Divide both sides of the equation by -\frac{10000}{67}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{33+34}{67}
Substitute 1 for y in x=\frac{33}{67}y+\frac{34}{67}. Because the resulting equation contains only one variable, you can solve for x directly.
x=1
Add \frac{34}{67} to \frac{33}{67} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=1,y=1
The system is now solved.
201x-99y=102,101x-199y=-98
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}201&-99\\101&-199\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}102\\-98\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}201&-99\\101&-199\end{matrix}\right))\left(\begin{matrix}201&-99\\101&-199\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}201&-99\\101&-199\end{matrix}\right))\left(\begin{matrix}102\\-98\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}201&-99\\101&-199\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}201&-99\\101&-199\end{matrix}\right))\left(\begin{matrix}102\\-98\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}201&-99\\101&-199\end{matrix}\right))\left(\begin{matrix}102\\-98\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{199}{201\left(-199\right)-\left(-99\times 101\right)}&-\frac{-99}{201\left(-199\right)-\left(-99\times 101\right)}\\-\frac{101}{201\left(-199\right)-\left(-99\times 101\right)}&\frac{201}{201\left(-199\right)-\left(-99\times 101\right)}\end{matrix}\right)\left(\begin{matrix}102\\-98\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{199}{30000}&-\frac{33}{10000}\\\frac{101}{30000}&-\frac{67}{10000}\end{matrix}\right)\left(\begin{matrix}102\\-98\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{199}{30000}\times 102-\frac{33}{10000}\left(-98\right)\\\frac{101}{30000}\times 102-\frac{67}{10000}\left(-98\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Do the arithmetic.
x=1,y=1
Extract the matrix elements x and y.
201x-99y=102,101x-199y=-98
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
101\times 201x+101\left(-99\right)y=101\times 102,201\times 101x+201\left(-199\right)y=201\left(-98\right)
To make 201x and 101x equal, multiply all terms on each side of the first equation by 101 and all terms on each side of the second by 201.
20301x-9999y=10302,20301x-39999y=-19698
Simplify.
20301x-20301x-9999y+39999y=10302+19698
Subtract 20301x-39999y=-19698 from 20301x-9999y=10302 by subtracting like terms on each side of the equal sign.
-9999y+39999y=10302+19698
Add 20301x to -20301x. Terms 20301x and -20301x cancel out, leaving an equation with only one variable that can be solved.
30000y=10302+19698
Add -9999y to 39999y.
30000y=30000
Add 10302 to 19698.
y=1
Divide both sides by 30000.
101x-199=-98
Substitute 1 for y in 101x-199y=-98. Because the resulting equation contains only one variable, you can solve for x directly.
101x=101
Add 199 to both sides of the equation.
x=1
Divide both sides by 101.
x=1,y=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}