Skip to main content
Solve for a, b, c
Tick mark Image

Similar Problems from Web Search

Share

a=\frac{1}{2}b+\frac{2}{5}c+\frac{33}{20}
Solve 20a-10b-8c=33 for a.
-10\left(\frac{1}{2}b+\frac{2}{5}c+\frac{33}{20}\right)+24b-4c=12.2 -8\left(\frac{1}{2}b+\frac{2}{5}c+\frac{33}{20}\right)-4b+20c=-12.2
Substitute \frac{1}{2}b+\frac{2}{5}c+\frac{33}{20} for a in the second and third equation.
b=\frac{287}{190}+\frac{8}{19}c c=\frac{5}{84}+\frac{10}{21}b
Solve these equations for b and c respectively.
c=\frac{5}{84}+\frac{10}{21}\left(\frac{287}{190}+\frac{8}{19}c\right)
Substitute \frac{287}{190}+\frac{8}{19}c for b in the equation c=\frac{5}{84}+\frac{10}{21}b.
c=\frac{113}{116}
Solve c=\frac{5}{84}+\frac{10}{21}\left(\frac{287}{190}+\frac{8}{19}c\right) for c.
b=\frac{287}{190}+\frac{8}{19}\times \frac{113}{116}
Substitute \frac{113}{116} for c in the equation b=\frac{287}{190}+\frac{8}{19}c.
b=\frac{557}{290}
Calculate b from b=\frac{287}{190}+\frac{8}{19}\times \frac{113}{116}.
a=\frac{1}{2}\times \frac{557}{290}+\frac{2}{5}\times \frac{113}{116}+\frac{33}{20}
Substitute \frac{557}{290} for b and \frac{113}{116} for c in the equation a=\frac{1}{2}b+\frac{2}{5}c+\frac{33}{20}.
a=3
Calculate a from a=\frac{1}{2}\times \frac{557}{290}+\frac{2}{5}\times \frac{113}{116}+\frac{33}{20}.
a=3 b=\frac{557}{290} c=\frac{113}{116}
The system is now solved.