Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

y=2x+z+w-1
Solve 2x-y+z+w=1 for y.
3x-2\left(2x+z+w-1\right)-4z-2w=1 x+2x+z+w-1+3z-2w=2
Substitute 2x+z+w-1 for y in the second and third equation.
x=-6z-4w+1 z=\frac{3}{4}-\frac{3}{4}x+\frac{1}{4}w
Solve these equations for x and z respectively.
z=\frac{3}{4}-\frac{3}{4}\left(-6z-4w+1\right)+\frac{1}{4}w
Substitute -6z-4w+1 for x in the equation z=\frac{3}{4}-\frac{3}{4}x+\frac{1}{4}w.
z=-\frac{13}{14}w
Solve z=\frac{3}{4}-\frac{3}{4}\left(-6z-4w+1\right)+\frac{1}{4}w for z.
x=-6\left(-\frac{13}{14}\right)w-4w+1
Substitute -\frac{13}{14}w for z in the equation x=-6z-4w+1.
x=1+\frac{11}{7}w
Calculate x from x=-6\left(-\frac{13}{14}\right)w-4w+1.
y=2\left(1+\frac{11}{7}w\right)-\frac{13}{14}w+w-1
Substitute 1+\frac{11}{7}w for x and -\frac{13}{14}w for z in the equation y=2x+z+w-1.
y=1+\frac{45}{14}w
Calculate y from y=2\left(1+\frac{11}{7}w\right)-\frac{13}{14}w+w-1.
x=1+\frac{11}{7}w y=1+\frac{45}{14}w z=-\frac{13}{14}w
The system is now solved.