\left\{ \begin{array} { c } { 2 x - y + z + w = 1 } \\ { 3 x - 2 y - 4 z - 2 w = 1 } \\ { x + y + 3 z - 2 w = 2 } \end{array} \right.
Solve for x, y, z
x=\frac{11w}{7}+1
y=\frac{45w}{14}+1
z=-\frac{13w}{14}
Share
Copied to clipboard
y=2x+z+w-1
Solve 2x-y+z+w=1 for y.
3x-2\left(2x+z+w-1\right)-4z-2w=1 x+2x+z+w-1+3z-2w=2
Substitute 2x+z+w-1 for y in the second and third equation.
x=-6z-4w+1 z=\frac{3}{4}-\frac{3}{4}x+\frac{1}{4}w
Solve these equations for x and z respectively.
z=\frac{3}{4}-\frac{3}{4}\left(-6z-4w+1\right)+\frac{1}{4}w
Substitute -6z-4w+1 for x in the equation z=\frac{3}{4}-\frac{3}{4}x+\frac{1}{4}w.
z=-\frac{13}{14}w
Solve z=\frac{3}{4}-\frac{3}{4}\left(-6z-4w+1\right)+\frac{1}{4}w for z.
x=-6\left(-\frac{13}{14}\right)w-4w+1
Substitute -\frac{13}{14}w for z in the equation x=-6z-4w+1.
x=1+\frac{11}{7}w
Calculate x from x=-6\left(-\frac{13}{14}\right)w-4w+1.
y=2\left(1+\frac{11}{7}w\right)-\frac{13}{14}w+w-1
Substitute 1+\frac{11}{7}w for x and -\frac{13}{14}w for z in the equation y=2x+z+w-1.
y=1+\frac{45}{14}w
Calculate y from y=2\left(1+\frac{11}{7}w\right)-\frac{13}{14}w+w-1.
x=1+\frac{11}{7}w y=1+\frac{45}{14}w z=-\frac{13}{14}w
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}