\left\{ \begin{array} { c } { 13 x + 650 + 11 ( y - 5 ) = 1240 } \\ { x + y = 104 } \end{array} \right.
Solve for x, y
x = -\frac{499}{2} = -249\frac{1}{2} = -249.5
y = \frac{707}{2} = 353\frac{1}{2} = 353.5
Graph
Share
Copied to clipboard
13x+11\left(y-5\right)+650=1240,x+y=104
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
13x+11\left(y-5\right)+650=1240
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
13x+11y-55+650=1240
Multiply 11 times y-5.
13x+11y+595=1240
Add -55 to 650.
13x+11y=645
Subtract 595 from both sides of the equation.
13x=-11y+645
Subtract 11y from both sides of the equation.
x=\frac{1}{13}\left(-11y+645\right)
Divide both sides by 13.
x=-\frac{11}{13}y+\frac{645}{13}
Multiply \frac{1}{13} times -11y+645.
-\frac{11}{13}y+\frac{645}{13}+y=104
Substitute \frac{-11y+645}{13} for x in the other equation, x+y=104.
\frac{2}{13}y+\frac{645}{13}=104
Add -\frac{11y}{13} to y.
\frac{2}{13}y=\frac{707}{13}
Subtract \frac{645}{13} from both sides of the equation.
y=\frac{707}{2}
Divide both sides of the equation by \frac{2}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{11}{13}\times \frac{707}{2}+\frac{645}{13}
Substitute \frac{707}{2} for y in x=-\frac{11}{13}y+\frac{645}{13}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{7777}{26}+\frac{645}{13}
Multiply -\frac{11}{13} times \frac{707}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{499}{2}
Add \frac{645}{13} to -\frac{7777}{26} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{499}{2},y=\frac{707}{2}
The system is now solved.
13x+11\left(y-5\right)+650=1240,x+y=104
Put the equations in standard form and then use matrices to solve the system of equations.
13x+11\left(y-5\right)+650=1240
Simplify the first equation to put it in standard form.
13x+11y-55+650=1240
Multiply 11 times y-5.
13x+11y+595=1240
Add -55 to 650.
13x+11y=645
Subtract 595 from both sides of the equation.
\left(\begin{matrix}13&11\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}645\\104\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}13&11\\1&1\end{matrix}\right))\left(\begin{matrix}13&11\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&11\\1&1\end{matrix}\right))\left(\begin{matrix}645\\104\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}13&11\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&11\\1&1\end{matrix}\right))\left(\begin{matrix}645\\104\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&11\\1&1\end{matrix}\right))\left(\begin{matrix}645\\104\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13-11}&-\frac{11}{13-11}\\-\frac{1}{13-11}&\frac{13}{13-11}\end{matrix}\right)\left(\begin{matrix}645\\104\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{11}{2}\\-\frac{1}{2}&\frac{13}{2}\end{matrix}\right)\left(\begin{matrix}645\\104\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 645-\frac{11}{2}\times 104\\-\frac{1}{2}\times 645+\frac{13}{2}\times 104\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{499}{2}\\\frac{707}{2}\end{matrix}\right)
Do the arithmetic.
x=-\frac{499}{2},y=\frac{707}{2}
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}