\left\{ \begin{array} { c } { 12.5 x + 13 y = 9750 } \\ { x + y = 9750 } \end{array} \right.
Solve for x, y
x=234000
y=-224250
Graph
Share
Copied to clipboard
12.5x+13y=9750,x+y=9750
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
12.5x+13y=9750
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
12.5x=-13y+9750
Subtract 13y from both sides of the equation.
x=0.08\left(-13y+9750\right)
Divide both sides of the equation by 12.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-1.04y+780
Multiply 0.08 times -13y+9750.
-1.04y+780+y=9750
Substitute -\frac{26y}{25}+780 for x in the other equation, x+y=9750.
-0.04y+780=9750
Add -\frac{26y}{25} to y.
-0.04y=8970
Subtract 780 from both sides of the equation.
y=-224250
Multiply both sides by -25.
x=-1.04\left(-224250\right)+780
Substitute -224250 for y in x=-1.04y+780. Because the resulting equation contains only one variable, you can solve for x directly.
x=233220+780
Multiply -1.04 times -224250.
x=234000
Add 780 to 233220.
x=234000,y=-224250
The system is now solved.
12.5x+13y=9750,x+y=9750
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}12.5&13\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9750\\9750\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}12.5&13\\1&1\end{matrix}\right))\left(\begin{matrix}12.5&13\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12.5&13\\1&1\end{matrix}\right))\left(\begin{matrix}9750\\9750\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}12.5&13\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12.5&13\\1&1\end{matrix}\right))\left(\begin{matrix}9750\\9750\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12.5&13\\1&1\end{matrix}\right))\left(\begin{matrix}9750\\9750\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12.5-13}&-\frac{13}{12.5-13}\\-\frac{1}{12.5-13}&\frac{12.5}{12.5-13}\end{matrix}\right)\left(\begin{matrix}9750\\9750\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&26\\2&-25\end{matrix}\right)\left(\begin{matrix}9750\\9750\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 9750+26\times 9750\\2\times 9750-25\times 9750\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}234000\\-224250\end{matrix}\right)
Do the arithmetic.
x=234000,y=-224250
Extract the matrix elements x and y.
12.5x+13y=9750,x+y=9750
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
12.5x+13y=9750,12.5x+12.5y=12.5\times 9750
To make \frac{25x}{2} and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 12.5.
12.5x+13y=9750,12.5x+12.5y=121875
Simplify.
12.5x-12.5x+13y-12.5y=9750-121875
Subtract 12.5x+12.5y=121875 from 12.5x+13y=9750 by subtracting like terms on each side of the equal sign.
13y-12.5y=9750-121875
Add \frac{25x}{2} to -\frac{25x}{2}. Terms \frac{25x}{2} and -\frac{25x}{2} cancel out, leaving an equation with only one variable that can be solved.
0.5y=9750-121875
Add 13y to -\frac{25y}{2}.
0.5y=-112125
Add 9750 to -121875.
y=-224250
Multiply both sides by 2.
x-224250=9750
Substitute -224250 for y in x+y=9750. Because the resulting equation contains only one variable, you can solve for x directly.
x=234000
Add 224250 to both sides of the equation.
x=234000,y=-224250
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}