Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

0,6x+0,5y=0,3\left(x+y+z\right) 0,4x+1,2y+1,2z=x+y+z y=100+x
Multiply each equation by the least common multiple of denominators in it. Simplify.
y=100+x 0,4x+1,2y+1,2z=x+y+z 0,6x+0,5y=0,3\left(x+y+z\right)
Reorder the equations.
0,4x+1,2\left(100+x\right)+1,2z=x+100+x+z 0,6x+0,5\left(100+x\right)=0,3\left(x+100+x+z\right)
Substitute 100+x for y in the second and third equation.
x=50+0,5z z=\frac{200}{3}+\frac{5}{3}x
Solve these equations for x and z respectively.
z=\frac{200}{3}+\frac{5}{3}\left(50+0,5z\right)
Substitute 50+0,5z for x in the equation z=\frac{200}{3}+\frac{5}{3}x.
z=900
Solve z=\frac{200}{3}+\frac{5}{3}\left(50+0,5z\right) for z.
x=50+0,5\times 900
Substitute 900 for z in the equation x=50+0,5z.
x=500
Calculate x from x=50+0,5\times 900.
y=100+500
Substitute 500 for x in the equation y=100+x.
y=600
Calculate y from y=100+500.
x=500 y=600 z=900
The system is now solved.