\left\{ \begin{array} { c } { 0,6 x + 0,5 y = 0,3 ( x + y + 2 ) } \\ { 0,2 x + 0,6 y + 0,6 z = \frac { x + y + z } { 2 } } \\ { y = 100 + x } \end{array} \right.
Solve for x, y, z
x=-38,8
y=61,2
z=-177,6
Share
Copied to clipboard
0,6x+0,5y=0,3\left(x+y+2\right) 0,4x+1,2y+1,2z=x+y+z y=100+x
Multiply each equation by the least common multiple of denominators in it. Simplify.
y=100+x 0,4x+1,2y+1,2z=x+y+z 0,6x+0,5y=0,3\left(x+y+2\right)
Reorder the equations.
0,4x+1,2\left(100+x\right)+1,2z=x+100+x+z 0,6x+0,5\left(100+x\right)=0,3\left(x+100+x+2\right)
Substitute 100+x for y in the second and third equation.
z=-100+2x x=-38,8
Solve these equations for z and x respectively.
z=-100+2\left(-38,8\right)
Substitute -38,8 for x in the equation z=-100+2x.
z=-177,6
Calculate z from z=-100+2\left(-38,8\right).
y=100-38,8
Substitute -38,8 for x in the equation y=100+x.
y=61,2
Calculate y from y=100-38,8.
x=-38,8 y=61,2 z=-177,6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}