Solve for λ
\lambda =\frac{-\sqrt{3}-1}{2}\approx -1.366025404
Share
Copied to clipboard
\lambda -\sqrt{3}\lambda =1
Add 1 to both sides. Anything plus zero gives itself.
-\sqrt{3}\lambda +\lambda =1
Reorder the terms.
\left(-\sqrt{3}+1\right)\lambda =1
Combine all terms containing \lambda .
\left(1-\sqrt{3}\right)\lambda =1
The equation is in standard form.
\frac{\left(1-\sqrt{3}\right)\lambda }{1-\sqrt{3}}=\frac{1}{1-\sqrt{3}}
Divide both sides by -\sqrt{3}+1.
\lambda =\frac{1}{1-\sqrt{3}}
Dividing by -\sqrt{3}+1 undoes the multiplication by -\sqrt{3}+1.
\lambda =\frac{-\sqrt{3}-1}{2}
Divide 1 by -\sqrt{3}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}