Solve for λ
\lambda =\frac{\sqrt{24990001998001}+4999001}{200000}\approx 49.990005499
\lambda =\frac{4999001-\sqrt{24990001998001}}{200000}\approx 0.000004501
Share
Copied to clipboard
100000\lambda ^{2}-4999001\lambda +22.5=0
Multiply both sides of the equation by 100000.
\lambda =\frac{-\left(-4999001\right)±\sqrt{\left(-4999001\right)^{2}-4\times 100000\times 22.5}}{2\times 100000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100000 for a, -4999001 for b, and 22.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-4999001\right)±\sqrt{24990010998001-4\times 100000\times 22.5}}{2\times 100000}
Square -4999001.
\lambda =\frac{-\left(-4999001\right)±\sqrt{24990010998001-400000\times 22.5}}{2\times 100000}
Multiply -4 times 100000.
\lambda =\frac{-\left(-4999001\right)±\sqrt{24990010998001-9000000}}{2\times 100000}
Multiply -400000 times 22.5.
\lambda =\frac{-\left(-4999001\right)±\sqrt{24990001998001}}{2\times 100000}
Add 24990010998001 to -9000000.
\lambda =\frac{4999001±\sqrt{24990001998001}}{2\times 100000}
The opposite of -4999001 is 4999001.
\lambda =\frac{4999001±\sqrt{24990001998001}}{200000}
Multiply 2 times 100000.
\lambda =\frac{\sqrt{24990001998001}+4999001}{200000}
Now solve the equation \lambda =\frac{4999001±\sqrt{24990001998001}}{200000} when ± is plus. Add 4999001 to \sqrt{24990001998001}.
\lambda =\frac{4999001-\sqrt{24990001998001}}{200000}
Now solve the equation \lambda =\frac{4999001±\sqrt{24990001998001}}{200000} when ± is minus. Subtract \sqrt{24990001998001} from 4999001.
\lambda =\frac{\sqrt{24990001998001}+4999001}{200000} \lambda =\frac{4999001-\sqrt{24990001998001}}{200000}
The equation is now solved.
100000\lambda ^{2}-4999001\lambda +22.5=0
Multiply both sides of the equation by 100000.
100000\lambda ^{2}-4999001\lambda =-22.5
Subtract 22.5 from both sides. Anything subtracted from zero gives its negation.
\frac{100000\lambda ^{2}-4999001\lambda }{100000}=-\frac{22.5}{100000}
Divide both sides by 100000.
\lambda ^{2}-\frac{4999001}{100000}\lambda =-\frac{22.5}{100000}
Dividing by 100000 undoes the multiplication by 100000.
\lambda ^{2}-\frac{4999001}{100000}\lambda =-0.000225
Divide -22.5 by 100000.
\lambda ^{2}-\frac{4999001}{100000}\lambda +\left(-\frac{4999001}{200000}\right)^{2}=-0.000225+\left(-\frac{4999001}{200000}\right)^{2}
Divide -\frac{4999001}{100000}, the coefficient of the x term, by 2 to get -\frac{4999001}{200000}. Then add the square of -\frac{4999001}{200000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-\frac{4999001}{100000}\lambda +\frac{24990010998001}{40000000000}=-0.000225+\frac{24990010998001}{40000000000}
Square -\frac{4999001}{200000} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}-\frac{4999001}{100000}\lambda +\frac{24990010998001}{40000000000}=\frac{24990001998001}{40000000000}
Add -0.000225 to \frac{24990010998001}{40000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(\lambda -\frac{4999001}{200000}\right)^{2}=\frac{24990001998001}{40000000000}
Factor \lambda ^{2}-\frac{4999001}{100000}\lambda +\frac{24990010998001}{40000000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -\frac{4999001}{200000}\right)^{2}}=\sqrt{\frac{24990001998001}{40000000000}}
Take the square root of both sides of the equation.
\lambda -\frac{4999001}{200000}=\frac{\sqrt{24990001998001}}{200000} \lambda -\frac{4999001}{200000}=-\frac{\sqrt{24990001998001}}{200000}
Simplify.
\lambda =\frac{\sqrt{24990001998001}+4999001}{200000} \lambda =\frac{4999001-\sqrt{24990001998001}}{200000}
Add \frac{4999001}{200000} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}